Stylopine
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 562622

CAS#: 4312-32-7 (racemic)

Description: Tetrahydrocoptisine is an alkaloid that has been found in C. impatiens and has anti-inflammatory and antioxidant activities. It inhibits LPS-induced NF-κB activation and production of nitric oxide (NO), TNF-α, and IL-6 in isolated mouse peritoneal macrophages when used at concentrations ranging from 0.001 to 1 µg/ml. Tetrahydrocoptisine (10 and 30 mg/kg) inhibits xylene-induced ear edema in mice, and it decreases serum levels of TNF-α in a mouse model of LPS-induced septic shock. It reduces the severity of ethanol-induced gastric ulcers in mice when administered at doses of 10 or 20 mg/kg.


Chemical Structure

img
Stylopine
CAS# 4312-32-7 (racemic)

Theoretical Analysis

MedKoo Cat#: 562622
Name: Stylopine
CAS#: 4312-32-7 (racemic)
Chemical Formula: C19H17NO4
Exact Mass: 323.11
Molecular Weight: 323.340
Elemental Analysis: C, 70.58; H, 5.30; N, 4.33; O, 19.79

Price and Availability

Size Price Availability Quantity
1mg USD 220 2 Weeks
5mg USD 440 2 Weeks
10mg USD 720 2 Weeks
25mg USD 1280 2 Weeks
Bulk inquiry

Related CAS #: 84-39-9 (S-isomer)   4312-32-7 (racemic)   7461-02-1 (racemic)    

Synonym: Stylopine; Tetrahydrocoptisine; (R,S±)-Stylopine; (R,S±) Stylopine; NSC 110382; NSC-110382; NSC110382; NSC 404529; NSC-404529; NSC404529;

IUPAC/Chemical Name: 6,7,12b,13-tetrahydro-4H-[1,3]dioxolo[4',5':7,8]isoquinolino[3,2-a][1,3]dioxolo[4,5-g]isoquinoline

InChi Key: UXYJCYXWJGAKQY-UHFFFAOYSA-N

InChi Code: InChI=1S/C19H17NO4/c1-2-16-19(24-10-21-16)14-8-20-4-3-12-6-17-18(23-9-22-17)7-13(12)15(20)5-11(1)14/h1-2,6-7,15H,3-5,8-10H2

SMILES Code: C12=CC(OCO3)=C3C=C1C(CC(C=CC4=C5OCO4)=C5C6)N6CC2

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMF 1.0 3.09
Chloroform 5.0 15.46

Preparing Stock Solutions

The following data is based on the product molecular weight 323.34 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Broni E, Kwofie SK, Asiedu SO, Miller WA 3rd, Wilson MD. A Molecular Modeling Approach to Identify Potential Antileishmanial Compounds Against the Cell Division Cycle (cdc)-2-Related Kinase 12 (CRK12) Receptor of Leishmania donovani. Biomolecules. 2021 Mar 18;11(3):458. doi: 10.3390/biom11030458. PMID: 33803906; PMCID: PMC8003136.

2: Singh S, Florez H. Bioinformatic study to discover natural molecules with activity against COVID-19. F1000Res. 2020 Oct 6;9:1203. doi: 10.12688/f1000research.26731.1. PMID: 33145015; PMCID: PMC7590895.

3: Raafat KM, El-Zahaby SA. Niosomes of active Fumaria officinalis phytochemicals: antidiabetic, antineuropathic, anti-inflammatory, and possible mechanisms of action. Chin Med. 2020 May 1;15:40. doi: 10.1186/s13020-020-00321-1. PMID: 32377229; PMCID: PMC7195756.

4: Zuo MT, Liu SS, Lin L, Wang ZY, Bai X, Sun ZL, Liu ZY. Characterization of N-methylcanadine and N-methylstylopine metabolites in rat liver S9 by high- performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2018 Dec 15;32(23):2047-2054. doi: 10.1002/rcm.8286. PMID: 30252168.

5: Yahyazadeh M, Meinen R, Hänsch R, Abouzeid S, Selmar D. Impact of drought and salt stress on the biosynthesis of alkaloids in Chelidonium majus L. Phytochemistry. 2018 Aug;152:204-212. doi: 10.1016/j.phytochem.2018.05.007. Epub 2018 May 21. PMID: 29783187.

6: Naseri M, Emami SA, Asili J, Tayarani-Najaran Z, Dehghan G, Schneider B, Iranshahi M. Rupestrines A-D, alkaloids from the aerial parts of Corydalis rupestris. Bioorg Chem. 2018 Apr;77:651-659. doi: 10.1016/j.bioorg.2018.02.019. Epub 2018 Feb 24. PMID: 29502026.

7: Han JW, Shim SH, Jang KS, Choi YH, Kim H, Choi GJ. In Vivo Disease Control Efficacy of Isoquinoline Alkaloids Isolated from Corydalis ternata against Wheat Leaf Rust and Pepper Anthracnose. J Microbiol Biotechnol. 2018 Feb 28;28(2):262-266. doi: 10.4014/jmb.1707.07009. PMID: 29141127.

8: Shang C, Li MX, Li HB, He LW, Meng ZQ, Huang WZ, Wang ZZ, Ding G, Yang ZL, Xiao W. [Simultaneous determination of thirteen components in Tong'an injection by LC-MS/MS]. Zhongguo Zhong Yao Za Zhi. 2017 May;42(10):1901-1907. Chinese. doi: 10.19540/j.cnki.cjcmm.2017.0080. PMID: 29090549.

9: Yahyazadeh M, Ratmoyo P, Bittner F, Sato F, Selmar D. Cloning and Characterization of Cheilanthifoline and Stylopine Synthase Genes from Chelidonium majus. Plant Cell Physiol. 2017 Aug 1;58(8):1421-1430. doi: 10.1093/pcp/pcx077. PMID: 28633475.

10: Hulcová D, Breiterová K, Zemanová L, Siatkac T, Šafratová M, Vaněčková N, Hošt'fálková A, Wsól V, Cahliková L. AKR1C3 Inhibitory Potency of Naturally- occurring Amaryllidaceae Alkaloids of Different Structural Types. Nat Prod Commun. 2017 Feb;12(2):245-246. PMID: 30428222.

11: Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJ. Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast. ACS Synth Biol. 2016 Dec 16;5(12):1505-1518. doi: 10.1021/acssynbio.6b00119. Epub 2016 Aug 2. PMID: 27442619.

12: Bribi N, Algieri F, Rodriguez-Nogales A, Vezza T, Garrido-Mesa J, Utrilla MP, Del Mar Contreras M, Maiza F, Segura-Carretero A, Rodriguez-Cabezas ME, Gálvez J. Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells. Phytomedicine. 2016 Aug 15;23(9):901-13. doi: 10.1016/j.phymed.2016.05.003. Epub 2016 May 12. PMID: 27387398.

13: Hori K, Okano S, Sato F. Efficient microbial production of stylopine using a Pichia pastoris expression system. Sci Rep. 2016 Feb 29;6:22201. doi: 10.1038/srep22201. PMID: 26923560; PMCID: PMC4770593.

14: Jesionek W, Fornal E, Majer-Dziedzic B, Móricz ÁM, Nowicky W, Choma IM. Investigation of the composition and antibacterial activity of Ukrain™ drug using liquid chromatography techniques. J Chromatogr A. 2016 Jan 15;1429:340-7. doi: 10.1016/j.chroma.2015.12.015. Epub 2015 Dec 8. PMID: 26718183.

15: Pietra D, Borghini A, Bianucci AM. In vitro studies of antifibrotic and cytoprotective effects elicited by proto-berberine alkaloids in human dermal fibroblasts. Pharmacol Rep. 2015 Dec;67(6):1081-9. doi: 10.1016/j.pharep.2015.04.001. Epub 2015 Apr 16. PMID: 26481525.

16: Trenchard IJ, Smolke CD. Engineering strategies for the fermentative production of plant alkaloids in yeast. Metab Eng. 2015 Jul;30:96-104. doi: 10.1016/j.ymben.2015.05.001. Epub 2015 May 14. PMID: 25981946; PMCID: PMC4519383.

17: Li W, Huang H, Niu X, Fan T, Hu H, Li Y, Yao H, Li H, Mu Q. Tetrahydrocoptisine protects rats from LPS-induced acute lung injury. Inflammation. 2014 Dec;37(6):2106-15. doi: 10.1007/s10753-014-9945-7. PMID: 24928630.

18: Skarydova L, Hofman J, Chlebek J, Havrankova J, Kosanova K, Skarka A, Hostalkova A, Plucha T, Cahlikova L, Wsol V. Isoquinoline alkaloids as a novel type of AKR1C3 inhibitors. J Steroid Biochem Mol Biol. 2014 Sep;143:250-8. doi: 10.1016/j.jsbmb.2014.04.005. Epub 2014 Apr 24. PMID: 24769118.

19: Verma P, Khan SA, Mathur AK, Ghosh S, Shanker K, Kalra A. Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor. Protoplasma. 2014 Nov;251(6):1359-71. doi: 10.1007/s00709-014-0638-8. Epub 2014 Mar 28. PMID: 24677097.

20: Li W, Huang H, Zhang Y, Fan T, Liu X, Xing W, Niu X. Anti-inflammatory effect of tetrahydrocoptisine from Corydalis impatiens is a function of possible inhibition of TNF-α, IL-6 and NO production in lipopolysaccharide-stimulated peritoneal macrophages through inhibiting NF-κB activation and MAPK pathway. Eur J Pharmacol. 2013 Sep 5;715(1-3):62-71. doi: 10.1016/j.ejphar.2013.06.017. Epub 2013 Jun 25. PMID: 23810685.