RapiGest SF

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 465644

CAS#: unknown

Description: RapiGest SF is the brand-name for sodium 3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propanesulfonate. It is an acid-cleavable anionic detergent.


Chemical Structure

img
RapiGest SF
CAS# unknown

Theoretical Analysis

MedKoo Cat#: 465644
Name: RapiGest SF
CAS#: unknown
Chemical Formula: C19H37NaO6S
Exact Mass: 416.22
Molecular Weight: 416.549
Elemental Analysis: C, 54.79; H, 8.95; Na, 5.52; O, 23.05; S, 7.70

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: RapiGest SF; RapiGest-SF; RapiGestSF;

IUPAC/Chemical Name: sodium 3-((2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy)propane-1-sulfonate

InChi Key: TVPPOWAYYCDJAS-UHFFFAOYSA-M

InChi Code: InChI=1S/C19H38O6S.Na/c1-3-4-5-6-7-8-9-10-11-13-19(2)24-17-18(25-19)16-23-14-12-15-26(20,21)22;/h18H,3-17H2,1-2H3,(H,20,21,22);/q;+1/p-1

SMILES Code: O=S(CCCOCC1OC(CCCCCCCCCCC)(C)OC1)([O-])=O.[Na+]

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 416.55 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Wu R, Pai A, Liu L, Xing S, Lu Y. NanoTPOT: Enhanced Sample Preparation for Quantitative Nanoproteomic Analysis. Anal Chem. 2020 May 5;92(9):6235-6240. doi: 10.1021/acs.analchem.0c00077. Epub 2020 Apr 20. PMID: 32255623.

2: Guan X, Zhang L, Wypych J. Direct mass spectrometric characterization of disulfide linkages. MAbs. 2018 May/Jun;10(4):572-582. doi: 10.1080/19420862.2018.1442998. Epub 2018 Mar 14. PMID: 29469657; PMCID: PMC5973703.

3: Wang L, Rubadue KJ, Alberts J, Bedwell DW, Ruterbories KJ. Development of a rapid and sensitive multiple reaction monitoring proteomic approach for quantification of transporters in human liver tissue. J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Sep 1;1061-1062:356-363. doi: 10.1016/j.jchromb.2017.07.051. Epub 2017 Aug 1. PMID: 28800539.

4: Yang N, Han B, Wang T. Protein Isolation from Plasma Membrane, Digestion and Processing for Strong Cation Exchange Fractionation. Bio Protoc. 2017 May 20;7(10):e2298. doi: 10.21769/BioProtoc.2298. PMID: 34541067; PMCID: PMC8410362.

5: Vatansever B, Muñoz A, Klein CL, Reinert K. Development and optimisation of a generic micro LC-ESI-MS method for the qualitative and quantitative determination of 30-mer toxic gliadin peptides in wheat flour for food analysis. Anal Bioanal Chem. 2017 Feb;409(4):989-997. doi: 10.1007/s00216-016-0013-z. Epub 2016 Oct 28. PMID: 27796452.

6: Kramer G, Woolerton Y, van Straalen JP, Vissers JP, Dekker N, Langridge JI, Beynon RJ, Speijer D, Sturk A, Aerts JM. Accuracy and Reproducibility in Quantification of Plasma Protein Concentrations by Mass Spectrometry without the Use of Isotopic Standards. PLoS One. 2015 Oct 16;10(10):e0140097. doi: 10.1371/journal.pone.0140097. PMID: 26474480; PMCID: PMC4608811.

7: Patel E, Clench MR, West A, Marshall PS, Marshall N, Francese S. Alternative surfactants for improved efficiency of in situ tryptic proteolysis of fingermarks. J Am Soc Mass Spectrom. 2015 Jun;26(6):862-72. doi: 10.1007/s13361-015-1140-z. Epub 2015 Apr 28. Erratum in: J Am Soc Mass Spectrom. 2015 Oct;26(10):1795. PMID: 25916599; PMCID: PMC4422860.

8: Wegdam W, Argmann CA, Kramer G, Vissers JP, Buist MR, Kenter GG, Aerts JM, Meijer D, Moerland PD. Label-free LC-MSe in tissue and serum reveals protein networks underlying differences between benign and malignant serous ovarian tumors. PLoS One. 2014 Sep 29;9(9):e108046. doi: 10.1371/journal.pone.0108046. PMID: 25265318; PMCID: PMC4180266.

9: Lin Y, Huo L, Liu Z, Li J, Liu Y, He Q, Wang X, Liang S. Sodium laurate, a novel protease- and mass spectrometry-compatible detergent for mass spectrometry-based membrane proteomics. PLoS One. 2013;8(3):e59779. doi: 10.1371/journal.pone.0059779. Epub 2013 Mar 28. PMID: 23555778; PMCID: PMC3610932.

10: Rebecchi KR, Go EP, Xu L, Woodin CL, Mure M, Desaire H. A general protease digestion procedure for optimal protein sequence coverage and post-translational modifications analysis of recombinant glycoproteins: application to the characterization of human lysyl oxidase-like 2 glycosylation. Anal Chem. 2011 Nov 15;83(22):8484-91. doi: 10.1021/ac2017037. Epub 2011 Oct 27. PMID: 21954900; PMCID: PMC3358347.

11: Mbeunkui F, Goshe MB. Investigation of solubilization and digestion methods for microsomal membrane proteome analysis using data-independent LC-MSE. Proteomics. 2011 Mar;11(5):898-911. doi: 10.1002/pmic.200900698. Epub 2011 Jan 31. PMID: 21280217.

12: Zhao Y, Jia W, Sun W, Jin W, Guo L, Wei J, Ying W, Zhang Y, Xie Y, Jiang Y, He F, Qian X. Combination of improved (18)O incorporation and multiple reaction monitoring: a universal strategy for absolute quantitative verification of serum candidate biomarkers of liver cancer. J Proteome Res. 2010 Jun 4;9(6):3319-27. doi: 10.1021/pr9011969. PMID: 20420461.

13: Norrgran J, Williams TL, Woolfitt AR, Solano MI, Pirkle JL, Barr JR. Optimization of digestion parameters for protein quantification. Anal Biochem. 2009 Oct 1;393(1):48-55. doi: 10.1016/j.ab.2009.05.050. Epub 2009 Jun 6. PMID: 19501563.

14: Imre T, Schlosser G, Pocsfalvi G, Siciliano R, Molnár-Szöllosi E, Kremmer T, Malorni A, Vékey K. Glycosylation site analysis of human alpha-1-acid glycoprotein (AGP) by capillary liquid chromatography-electrospray mass spectrometry. J Mass Spectrom. 2005 Nov;40(11):1472-83. doi: 10.1002/jms.938. PMID: 16261636.