Fluridone
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 464811

CAS#: 59756-60-4

Description: Fluridone is an herbicide. It inhibits phytoene desaturase (Ki = 0.03 µM), an enzyme involved in carotenoid biosynthesis. Fluridone (50 and 100 µM) decreases β-carotene levels and induces accumulation of phytofluene and phytoene in T. aestivum seedlings grown in the dark. It reduces levels of the plant hormone abscisic acid in hydrated and dehydrated V. faba leaves when used at a concentration of 10 µM. Fluridone is cytotoxic to the cyanobacterium Anacystis nidulans (LC50 = 0.125 µM) and has acute toxicity against several species of invertebrates and fish (median LC50s = 4.3 and 10.4 mg/L, respectively). Formulations containing fluridone have been used as aquatic herbicides.


Chemical Structure

img
Fluridone
CAS# 59756-60-4

Theoretical Analysis

MedKoo Cat#: 464811
Name: Fluridone
CAS#: 59756-60-4
Chemical Formula: C19H14F3NO
Exact Mass: 329.10
Molecular Weight: 329.322
Elemental Analysis: C, 69.30; H, 4.29; F, 17.31; N, 4.25; O, 4.86

Price and Availability

Size Price Availability Quantity
100mg USD 250 2 Weeks
250mg USD 450 2 Weeks
Bulk inquiry

Synonym: Fluridone;

IUPAC/Chemical Name: 1-methyl-3-phenyl-5-(3-(trifluoromethyl)phenyl)pyridin-4(1H)-one

InChi Key: YWBVHLJPRPCRSD-UHFFFAOYSA-N

InChi Code: InChI=1S/C19H14F3NO/c1-23-11-16(13-6-3-2-4-7-13)18(24)17(12-23)14-8-5-9-15(10-14)19(20,21)22/h2-12H,1H3

SMILES Code: O=C1C(C2=CC=CC=C2)=CN(C=C1C3=CC(C(F)(F)F)=CC=C3)C

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMF 30.0 91.10
DMSO 30.0 91.10
DMSO:PBS (pH 7.2) (1:3) 0.3 60.73
Ethanol 20.0 0.76

Preparing Stock Solutions

The following data is based on the product molecular weight 329.32 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Wei X, Mao L, Wei X, Xia M, Xu C. MYB41, MYB107, and MYC2 promote ABA- mediated primary fatty alcohol accumulation via activation of AchnFAR in wound suberization in kiwifruit. Hortic Res. 2020 Jun 1;7(1):86. doi: 10.1038/s41438-020-0309-1. PMID: 34059634.

2: Linden KJ, Hsia MM, Chen YT, Callis J. The Arabidopsis thaliana E3 Ubiquitin Ligase BRIZ Functions in Abscisic Acid Response. Front Plant Sci. 2021 Mar 16;12:641849. doi: 10.3389/fpls.2021.641849. PMID: 33796126; PMCID: PMC8008127.

3: Zhang Y, Xu F, Ding Y, Du H, Zhang Q, Dang X, Cao Y, Dodd IC, Xu W. Abscisic acid mediates barley rhizosheath formation under mild soil drying by promoting root hair growth and auxin response. Plant Cell Environ. 2021 Jun;44(6):1935-1945. doi: 10.1111/pce.14036. Epub 2021 Mar 17. PMID: 33629760.

4: Liu W, Jiang Y, Jin Y, Wang C, Yang J, Qi H. Drought-induced ABA, H2O2 and JA positively regulate CmCAD genes and lignin synthesis in melon stems. BMC Plant Biol. 2021 Feb 8;21(1):83. doi: 10.1186/s12870-021-02869-y. PMID: 33557758; PMCID: PMC7871556.

5: Qiao H, Zhang H, Wang Z, Shen Y. Fig fruit ripening is regulated by the interaction between ethylene and abscisic acid. J Integr Plant Biol. 2021 Mar;63(3):553-569. doi: 10.1111/jipb.13065. PMID: 33421307.

6: Mateo de Arias M, Gao L, Sherwood DA, Dwivedi KK, Price BJ, Jamison M, Kowallis BM, Carman JG. Whether Gametophytes are Reduced or Unreduced in Angiosperms Might Be Determined Metabolically. Genes (Basel). 2020 Dec 2;11(12):1449. doi: 10.3390/genes11121449. PMID: 33276690; PMCID: PMC7761559.

7: Wang M, Zhu X, Li Y, Xia Z. Transcriptome analysis of a new maize albino mutant reveals that zeta-carotene desaturase is involved in chloroplast development and retrograde signaling. Plant Physiol Biochem. 2020 Nov;156:407-419. doi: 10.1016/j.plaphy.2020.09.025. Epub 2020 Sep 25. PMID: 33010551.

8: Qian J, Sun T, Yan J, Hsu YF, Zheng M. Arabidopsis glucose-sensitive mutant 3 affects ABA biosynthesis and sensitivity during early seedling development. Plant Physiol Biochem. 2020 Nov;156:20-29. doi: 10.1016/j.plaphy.2020.08.045. Epub 2020 Aug 29. PMID: 32898831.

9: Tavakoli Hasanaklou N, Sedghi M, Moradi F, Ebadi Khazineh Ghadim A, Jahanbakhsh Ghodehkahriz S. Greenhouse evaluation of branching, leaf yield and biochemical compositions of Stevia rebaudiana Bertoni to decapitation and foliar application of abscisic acid and fluridone. Funct Plant Biol. 2020 Nov;47(12):1083-1097. doi: 10.1071/FP20045. PMID: 32731921.

10: He XL, Li DQ, Feng R, Qiao HL, Liu S, Xu R, Xu CQ, Chen J. 寄主植物根浸提液对肉苁蓉种子萌发及吸器形成的影响 [Effects of root extract of host plants on seed germination and haustorium formation of Cistanche deserticola]. Ying Yong Sheng Tai Xue Bao. 2020 Jul;31(7):2264-2270. Chinese. doi: 10.13287/j.1001-9332.202007.008. PMID: 32715690.

11: Dawuda MM, Liao W, Hu L, Yu J, Xie J, Calderón-Urrea A, Wu Y, Tang Z. Foliar application of abscisic acid mitigates cadmium stress and increases food safety of cadmium-sensitive lettuce (Lactuca sativa L.) genotype. PeerJ. 2020 Jul 2;8:e9270. doi: 10.7717/peerj.9270. PMID: 32676218; PMCID: PMC7335501.

12: Spirina UN, Voronkova TV, Ignatov MS. Are All Paraphyllia the Same? Front Plant Sci. 2020 Jun 19;11:858. doi: 10.3389/fpls.2020.00858. PMID: 32636865; PMCID: PMC7318891.

13: Lama K, Harlev G, Shafran H, Peer R, Flaishman MA. Anthocyanin accumulation is initiated by abscisic acid to enhance fruit color during fig (Ficus carica L.) ripening. J Plant Physiol. 2020 Aug;251:153192. doi: 10.1016/j.jplph.2020.153192. Epub 2020 Jun 2. PMID: 32554070.

14: Wang X, Zhang J, Song J, Huang M, Cai J, Zhou Q, Dai T, Jiang D. Abscisic acid and hydrogen peroxide are involved in drought priming-induced drought tolerance in wheat (Triticum aestivum L.). Plant Biol (Stuttg). 2020 Nov;22(6):1113-1122. doi: 10.1111/plb.13143. Epub 2020 Sep 9. PMID: 32530558.

15: Wei X, Mao L, Wei X, Xia M, Xu C. MYB41, MYB107, and MYC2 promote ABA- mediated primary fatty alcohol accumulation via activation of AchnFAR in wound suberization in kiwifruit. Hortic Res. 2020 Jun 1;7:86. doi: 10.1038/s41438-020-0309-1. PMID: 32528698; PMCID: PMC7261769.

16: Wickham P, Pandey P, Harter T, Sandovol-Solis S. UV light and temperature induced fluridone degradation in water and sediment and potential transport into aquifer. Environ Pollut. 2020 Oct;265(Pt A):114750. doi: 10.1016/j.envpol.2020.114750. Epub 2020 May 17. PMID: 32454379.

17: Barreto LC, Herken DMD, Silva BMR, Munné-Bosch S, Garcia QS. ABA and GA4 dynamic modulates secondary dormancy and germination in Syngonanthus verticillatus seeds. Planta. 2020 Mar 27;251(4):86. doi: 10.1007/s00425-020-03378-2. PMID: 32221719.

18: Liu HF, Xue XJ, Yu Y, Xu MM, Lu CC, Meng XL, Zhang BG, Ding XH, Chu ZH. Copper ions suppress abscisic acid biosynthesis to enhance defence against Phytophthora infestans in potato. Mol Plant Pathol. 2020 May;21(5):636-651. doi: 10.1111/mpp.12919. Epub 2020 Jan 30. PMID: 32077242; PMCID: PMC7170774.

19: Lando AP, Viana WG, Vale EM, Santos M, Silveira V, Steiner N. Cellular alteration and differential protein profile explain effects of GA3 and ABA and their inhibitor on Trichocline catharinensis (Asteraceae) seed germination. Physiol Plant. 2020 Jun;169(2):258-275. doi: 10.1111/ppl.13076. Epub 2020 Mar 13. PMID: 32065665.

20: Wang F, Sha J, Chen Q, Xu X, Zhu Z, Ge S, Jiang Y. Exogenous Abscisic Acid Regulates Distribution of 13C and 15N and Anthocyanin Synthesis in 'Red Fuji' Apple Fruit Under High Nitrogen Supply. Front Plant Sci. 2020 Jan 24;10:1738. doi: 10.3389/fpls.2019.01738. PMID: 32063908; PMCID: PMC6997889.