3-Acetyldeoxynivalenol

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 463081

CAS#: 50722-38-8

Description: 3-Acetyldeoxynivalenol is a natural inducer of DNA damage, cell cycle arrest, apoptosis, and autophagy in macrophages.


Chemical Structure

img
3-Acetyldeoxynivalenol
CAS# 50722-38-8

Theoretical Analysis

MedKoo Cat#: 463081
Name: 3-Acetyldeoxynivalenol
CAS#: 50722-38-8
Chemical Formula: C17H22O7
Exact Mass: 338.14
Molecular Weight: 338.356
Elemental Analysis: C, 60.35; H, 6.55; O, 33.10

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: 3-Acetyldeoxynivalenol; Deoxynivalenol 3-acetate;

IUPAC/Chemical Name: (2S,3'R,5'R,5a'R,6'S,9a'R)-6'-hydroxy-5a'-(hydroxymethyl)-5',8'-dimethyl-7'-oxo-2',3',4',5',5a',6',7',9a'-octahydrospiro[oxirane-2,10'-[2,5]methanobenzo[b]oxepin]-3'-yl acetate

InChi Key: ADFIQZBYNGPCGY-YMSRDNDKSA-N

InChi Code: InChI=1S/C17H22O7/c1-8-4-11-16(6-18,13(21)12(8)20)15(3)5-10(23-9(2)19)14(24-11)17(15)7-22-17/h4,10-11,13-14,18,21H,5-7H2,1-3H3/t10-,11-,13-,14?,15-,16-,17+/m1/s1

SMILES Code: O[C@@H]1C(C(C)=C[C@@H](OC2[C@H](OC(C)=O)C[C@@]3(C)[C@@]24OC4)[C@]13CO)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 338.36 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Tebele SM, Gbashi S, Adebo O, Changwa R, Naidu K, Njobeh PB. Quantification of multi-mycotoxin in cereals (maize, maize porridge, sorghum and wheat) from Limpopo province of South Africa. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2020 Sep 8:1-17. doi: 10.1080/19440049.2020.1808715. Epub ahead of print. PMID: 32897164.

2: Moretti S, Cavanna D, Lambertini F, Catellani D, Sammarco G, Barola C, Paoletti F, Saluti G, Galarini R, Suman M. Practical approach to develop a multi-group screening method for detection of mycotoxins, pesticides and veterinary drugs in food. J Mass Spectrom. 2020 Jul 11:e4618. doi: 10.1002/jms.4618. Epub ahead of print. PMID: 32757493.

3: Nomura M, Shidara K, Yasuda I, Aoyama K, Takahashi A, Ishibashi T. Development of a simultaneous quantification method for ten trichothecenes including deoxynivalenol-3-glucoside in feed. Mycotoxin Res. 2020 Nov;36(4):353-360. doi: 10.1007/s12550-020-00401-z. Epub 2020 Jul 11. PMID: 32653989.

4: Dong F, Zhang X, Xu JH, Shi JR, Lee YW, Chen XY, Li YP, Mokoena MP, Olaniran AO. Analysis of Fusarium graminearum Species Complex from Freshly Harvested Rice in Jiangsu Province (China). Plant Dis. 2020 Aug;104(8):2138-2143. doi: 10.1094/PDIS-01-20-0084-RE. Epub 2020 Jun 15. PMID: 32539593.

5: Mallmann CA, Tyska D, Almeida CAA, Oliveira MS, Gressler LT. Mycotoxicological monitoring of breakfast and infant cereals marketed in Brazil. Int J Food Microbiol. 2020 Oct 16;331:108628. doi: 10.1016/j.ijfoodmicro.2020.108628. Epub 2020 Apr 13. PMID: 32535523.

6: Panasiuk Ł, Jedziniak P, Pietruszka K, Posyniak A. Simultaneous Determination of Deoxynivalenol, Its Modified Forms, Nivalenol and Fusarenone-X in Feedstuffs by the Liquid Hromatography-Tandem Mass Spectrometry Method. Toxins (Basel). 2020 Jun 1;12(6):362. doi: 10.3390/toxins12060362. PMID: 32492900; PMCID: PMC7354445.

7: Liu N, Yang Y, Chen J, Jia H, Zhang Y, Jiang D, Wu G, Wu Z. 3-Acetyldeoxynivalenol induces lysosomal membrane permeabilization-mediated apoptosis and inhibits autophagic flux in macrophages. Environ Pollut. 2020 Oct;265(Pt B):114697. doi: 10.1016/j.envpol.2020.114697. Epub 2020 May 7. PMID: 32454357.

8: Spanic V, Katanic Z, Sulyok M, Krska R, Puskas K, Vida G, Drezner G, Šarkanj B. Multiple Fungal Metabolites Including Mycotoxins in Naturally Infected and Fusarium-Inoculated Wheat Samples. Microorganisms. 2020 Apr 17;8(4):578. doi: 10.3390/microorganisms8040578. PMID: 32316403; PMCID: PMC7232504.

9: Sneideris D, Ivanauskas A, Prakas P, Butkauskas D, Treikale O, Kadziene G, Rasiukeviciute N, Kelpsiene J, Suproniene S. Population Structure of Fusarium graminearum Isolated from Different Sources in One Area over the Course of Three Years. Phytopathology. 2020 Jul;110(7):1312-1318. doi: 10.1094/PHYTO-08-19-0298-R. Epub 2020 May 8. PMID: 32223642.

10: Maeda K, Tanaka Y, Matsuyama M, Sato M, Sadamatsu K, Suzuki T, Matsui K, Nakajima Y, Tokai T, Kanamaru K, Ohsato S, Kobayashi T, Fujimura M, Nishiuchi T, Takahashi-Ando N, Kimura M. Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes. Int J Food Microbiol. 2020 May 2;320:108532. doi: 10.1016/j.ijfoodmicro.2020.108532. Epub 2020 Jan 22. PMID: 32004825.

11: Huang C, Gangola MP, Ganeshan S, Hucl P, Kutcher HR, Chibbar RN. Spike culture derived wheat (Triticum aestivum L.) variants exhibit improved resistance to multiple chemotypes of Fusarium graminearum. PLoS One. 2019 Dec 19;14(12):e0226695. doi: 10.1371/journal.pone.0226695. PMID: 31856194; PMCID: PMC6922434.

12: Ksieniewicz-Woźniak E, Bryła M, Waśkiewicz A, Yoshinari T, Szymczyk K. Selected Trichothecenes in Barley Malt and Beer from Poland and an Assessment of Dietary Risks Associated with their Consumption. Toxins (Basel). 2019 Dec 9;11(12):715. doi: 10.3390/toxins11120715. PMID: 31835298; PMCID: PMC6949925.

13: Juan C, Oueslati S, Mañes J, Berrada H. Multimycotoxin Determination in Tunisian Farm Animal Feed. J Food Sci. 2019 Dec;84(12):3885-3893. doi: 10.1111/1750-3841.14948. Epub 2019 Nov 24. PMID: 31762027.

14: Tanaka N, Takushima R, Tanaka A, Okada A, Matsui K, Maeda K, Aikawa S, Kimura M, Takahashi-Ando N. Reduced Toxicity of Trichothecenes, Isotrichodermol, and Deoxynivalenol, by Transgenic Expression of the Tri101 3-O-Acetyltransferase Gene in Cultured Mammalian FM3A Cells. Toxins (Basel). 2019 Nov 10;11(11):654. doi: 10.3390/toxins11110654. PMID: 31717667; PMCID: PMC6891669.

15: Wipfler R, McCormick SP, Proctor R, Teresi J, Hao G, Ward T, Alexander N, Vaughan MM. Synergistic Phytotoxic Effects of Culmorin and Trichothecene Mycotoxins. Toxins (Basel). 2019 Sep 20;11(10):555. doi: 10.3390/toxins11100555. PMID: 31547160; PMCID: PMC6833022.

16: Arce-López B, Lizarraga E, Flores-Flores M, Irigoyen Á, González-Peñas E. Development and validation of a methodology based on Captiva EMR-lipid clean-up and LC-MS/MS analysis for the simultaneous determination of mycotoxins in human plasma. Talanta. 2020 Jan 1;206:120193. doi: 10.1016/j.talanta.2019.120193. Epub 2019 Jul 30. PMID: 31514835.

17: Wu L, Zhang H, Hu X, Zhang Y, Sun L, Li W, Wang B. Deacetylation of 3-acetyl-deoxynivalenol in wheat flour is mediated by water-soluble proteins during the making of Chinese steamed bread. Food Chem. 2020 Jan 15;303:125341. doi: 10.1016/j.foodchem.2019.125341. Epub 2019 Aug 8. PMID: 31442898.

18: Mokubedi SM, Phoku JZ, Changwa RN, Gbashi S, Njobeh PB. Analysis of Mycotoxins Contamination in Poultry Feeds Manufactured in Selected Provinces of South Africa Using UHPLC-MS/MS. Toxins (Basel). 2019 Aug 2;11(8):452. doi: 10.3390/toxins11080452. PMID: 31382387; PMCID: PMC6722855.

19: Tarazona A, Gómez JV, Mateo EM, Jiménez M, Mateo F. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. Int J Food Microbiol. 2019 Oct 2;306:108259. doi: 10.1016/j.ijfoodmicro.2019.108259. Epub 2019 Jun 30. PMID: 31349113.

20: Molina A, Chavarría G, Alfaro-Cascante M, Leiva A, Granados-Chinchilla F. Mycotoxins at the Start of the Food Chain in Costa Rica: Analysis of Six Fusarium Toxins and Ochratoxin A between 2013 and 2017 in Animal Feed and Aflatoxin M1 in Dairy Products. Toxins (Basel). 2019 May 31;11(6):312. doi: 10.3390/toxins11060312. PMID: 31159287; PMCID: PMC6628313.