Maltotriose
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 463041

CAS#: 1109-28-0

Description: Maltotriose is a trisaccharide consisting of three glucose molecules linked with α-1,4 glycosidic bonds. It is most commonly produced by the digestive enzyme alpha-amylase on amylose in starch. It is also the shortest chain oligosaccharide that can be classified as maltodextrin.


Chemical Structure

img
Maltotriose
CAS# 1109-28-0

Theoretical Analysis

MedKoo Cat#: 463041
Name: Maltotriose
CAS#: 1109-28-0
Chemical Formula: C18H32O16
Exact Mass: 504.17
Molecular Weight: 504.438
Elemental Analysis: C, 42.86; H, 6.39; O, 50.75

Price and Availability

Size Price Availability Quantity
1g USD 250 2 Weeks
5g USD 550 2 Weeks
Bulk inquiry

Synonym: Maltotriose; Amylotriose; NSC 170180; NSC-170180; NSC170180;

IUPAC/Chemical Name: (2R,3R,4R,5R)-4-(((2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-2,3,5,6-tetrahydroxyhexanal

InChi Key: RXVWSYJTUUKTEA-CGQAXDJHSA-N

InChi Code: InChI=1S/C18H32O16/c19-1-5(23)9(25)15(6(24)2-20)33-18-14(30)12(28)16(8(4-22)32-18)34-17-13(29)11(27)10(26)7(3-21)31-17/h1,5-18,20-30H,2-4H2/t5-,6+,7+,8+,9+,10+,11-,12+,13+,14+,15+,16+,17+,18+/m0/s1

SMILES Code: OC[C@H]([C@H]([C@@H]([C@H](C=O)O)O)O[C@H]1O[C@@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@H]([C@@H]([C@H]2O)O)O)CO)CO)O

Appearance: Solid powder

Purity: >97% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Product Data:
Biological target: Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli.
In vitro activity: This study shows that, among all maltodextrins tested (from maltose to maltoheptaose), only maltotriose was able to induce beta-galactosidase synthesis. Likewise, in an in vitro transcription system, initiation of transcription at malPp required the presence of the MalT protein and maltotriose along with the RNA polymerase holoenzyme; neither maltose nor maltotetraose could substitute for maltotriose. Reference: J Bacteriol. 1987 Jul;169(7):3059-61. https://pubmed.ncbi.nlm.nih.gov/3298211/
In vivo activity: This preliminary study tested the anti-tumor activity of maltotriose-modified fourth-generation poly(propylene imine) glycodendrimers (PPI-G4-M3) in vivo in the subcutaneous MEC-1 xenograft model of human chronic lymphocytic leukemia (CLL) in NOD scid gamma mice. The study showed that PPI-G4-M3 inhibited subcutaneous tumor growth more efficiently than fludarabine. The anti-tumor response was dose-dependent. Cationic PPI-G4-M3 showed the highest anti-tumor activity but also higher toxicity than the neutral dendrimers and fludarabine. Reference: Toxicol Appl Pharmacol. 2020 Sep 15;403:115139. https://pubmed.ncbi.nlm.nih.gov/32687837/

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMF 20.0 39.65
DMSO 57.5 113.99
PBS (pH 7.2) 3.0 5.95
Water 250.0 495.60

Preparing Stock Solutions

The following data is based on the product molecular weight 504.44 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol: 1. Narumi A, Rachi R, Yamazaki H, Kawaguchi S, Kikuchi M, Konno H, Osaki T, Okamoto Y, Shen X, Kakuchi T, Kataoka H, Nomoto A, Yoshimura T, Yano S. Maltotriose-Chlorin e6 Conjugate Linked via Tetraethyleneglycol as an Advanced Photosensitizer for Photodynamic Therapy. Synthesis and Antitumor Activities against Canine and Mouse Mammary Carcinoma Cells. ACS Omega. 2021 Mar 8;6(10):7023-7033. doi: 10.1021/acsomega.0c06316. PMID: 33748616; PMCID: PMC7970547. 2. Raibaud O, Richet E. Maltotriose is the inducer of the maltose regulon of Escherichia coli. J Bacteriol. 1987 Jul;169(7):3059-61. doi: 10.1128/jb.169.7.3059-3061.1987. PMID: 3298211; PMCID: PMC212348. 3. Franiak-Pietryga I, Ziemba B, Sikorska H, Jander M, Kuncman W, Danilewicz M, Appelhans D, Lewkowicz P, Ostrowska K, Bryszewska M, Borowiec M. Maltotriose-modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicol Appl Pharmacol. 2020 Sep 15;403:115139. doi: 10.1016/j.taap.2020.115139. Epub 2020 Jul 17. PMID: 32687837.
In vitro protocol: 1. Narumi A, Rachi R, Yamazaki H, Kawaguchi S, Kikuchi M, Konno H, Osaki T, Okamoto Y, Shen X, Kakuchi T, Kataoka H, Nomoto A, Yoshimura T, Yano S. Maltotriose-Chlorin e6 Conjugate Linked via Tetraethyleneglycol as an Advanced Photosensitizer for Photodynamic Therapy. Synthesis and Antitumor Activities against Canine and Mouse Mammary Carcinoma Cells. ACS Omega. 2021 Mar 8;6(10):7023-7033. doi: 10.1021/acsomega.0c06316. PMID: 33748616; PMCID: PMC7970547. 2. Raibaud O, Richet E. Maltotriose is the inducer of the maltose regulon of Escherichia coli. J Bacteriol. 1987 Jul;169(7):3059-61. doi: 10.1128/jb.169.7.3059-3061.1987. PMID: 3298211; PMCID: PMC212348.
In vivo protocol: 1. Franiak-Pietryga I, Ziemba B, Sikorska H, Jander M, Kuncman W, Danilewicz M, Appelhans D, Lewkowicz P, Ostrowska K, Bryszewska M, Borowiec M. Maltotriose-modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicol Appl Pharmacol. 2020 Sep 15;403:115139. doi: 10.1016/j.taap.2020.115139. Epub 2020 Jul 17. PMID: 32687837.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Zhu JP, Ma YR, Teng Y, Chen J, Banwell MG, Lan P. Emulsifying Properties of an Homologous Series of Medium- and Long-Chain d-Maltotriose Esters and their Impacts on the Viabilities of Selected Cell Lines. J Agric Food Chem. 2020 Aug 19;68(33):9004-9013. doi: 10.1021/acs.jafc.0c02890. Epub 2020 Aug 6. PMID: 32698579.

2: Franiak-Pietryga I, Ziemba B, Sikorska H, Jander M, Kuncman W, Danilewicz M, Appelhans D, Lewkowicz P, Ostrowska K, Bryszewska M, Borowiec M. Maltotriose- modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicol Appl Pharmacol. 2020 Sep 15;403:115139. doi: 10.1016/j.taap.2020.115139. Epub 2020 Jul 17. PMID: 32687837.

3: Jin L, Wang S, Cheng Y. A Raman spectroscopy analysis method for rapidly determining saccharides and its application to monitoring the extraction process of Wenxin granule manufacturing procedure. Spectrochim Acta A Mol Biomol Spectrosc. 2020 Nov 5;241:118603. doi: 10.1016/j.saa.2020.118603. Epub 2020 Jun 15. PMID: 32622050.

4: Gabr MT, Haywood T, Gowrishankar G, Srinivasan A, Gambhir SS. New synthesis of 6″-[18 F]fluoromaltotriose for positron emission tomography imaging of bacterial infection. J Labelled Comp Radiopharm. 2020 Sep;63(11):466-475. doi: 10.1002/jlcr.3868. Epub 2020 Jul 21. PMID: 32602175.

5: Andersen S, Møller MS, Poulsen JN, Pichler MJ, Svensson B, Lo Leggio L, Goh YJ, Abou Hachem M. An 1,4-α-Glucosyltransferase Defines a New Maltodextrin Catabolism Scheme in Lactobacillus acidophilus. Appl Environ Microbiol. 2020 Jul 20;86(15):e00661-20. doi: 10.1128/AEM.00661-20. PMID: 32444471; PMCID: PMC7376546.

6: Liu X, Chen H, Tao HY, Chen Z, Liang XB, Han P, Tao JH. Cloning and characterization of a novel amylopullulanase from Bacillus megaterium Y103 with transglycosylation activity. Biotechnol Lett. 2020 Sep;42(9):1719-1726. doi: 10.1007/s10529-020-02891-4. Epub 2020 Apr 22. PMID: 32318881.

7: Zhang C, Chen Z, Li W, Liu X, Tang S, Jiang L, Li M, Peng H, Lian M. Influences of different sugar ligands on targeted delivery of liposomes. J Drug Target. 2020 Aug-Sep;28(7-8):789-801. doi: 10.1080/1061186X.2020.1744156. Epub 2020 Apr 13. PMID: 32242754.

8: Wang CH, Lu LH, Huang C, He BF, Huang RB. Simultaneously Improved Thermostability and Hydrolytic Pattern of Alpha-Amylase by Engineering Central Beta Strands of TIM Barrel. Appl Biochem Biotechnol. 2020 Sep;192(1):57-70. doi: 10.1007/s12010-020-03308-8. Epub 2020 Mar 27. PMID: 32219624.

9: Shi R, Zhang J, Fang B, Tian X, Feng Y, Cheng Z, Fu Z, Zhang J, Wu J. Runners' metabolomic changes following marathon. Nutr Metab (Lond). 2020 Mar 13;17:19. doi: 10.1186/s12986-020-00436-0. Erratum in: Nutr Metab (Lond). 2020 Jul 7;17:53. PMID: 32190096; PMCID: PMC7071712.

10: Krogerus K, Gibson B. A re-evaluation of diastatic Saccharomyces cerevisiae strains and their role in brewing. Appl Microbiol Biotechnol. 2020 May;104(9):3745-3756. doi: 10.1007/s00253-020-10531-0. Epub 2020 Mar 13. PMID: 32170387; PMCID: PMC7162825.

11: Zlitni A, Gowrishankar G, Steinberg I, Haywood T, Sam Gambhir S. Maltotriose-based probes for fluorescence and photoacoustic imaging of bacterial infections. Nat Commun. 2020 Mar 6;11(1):1250. doi: 10.1038/s41467-020-14985-8. PMID: 32144257; PMCID: PMC7060353.

12: Bilskey SR, Olendorff SA, Chmielewska K, Tucker KR. A Comparative Analysis of Methods for Quantitation of Sugars during the Corn-to-Ethanol Fermentation Process. SLAS Technol. 2020 Oct;25(5):494-504. doi: 10.1177/2472630320908253. Epub 2020 Feb 28. PMID: 32111129.

13: Csernák O, Rácz B, Alberti Á, Béni S. Quantitative analysis of 3'- and 6'-sialyllactose in human milk samples by HPLC-MS/MS: A validated method for the comparison of two consecutive lactation periods in the same woman. J Pharm Biomed Anal. 2020 May 30;184:113184. doi: 10.1016/j.jpba.2020.113184. Epub 2020 Feb 19. PMID: 32109710.

14: Li M, Du J, Zhang K. Profiling of carbohydrates in commercial beers and their influence on beer quality. J Sci Food Agric. 2020 May;100(7):3062-3070. doi: 10.1002/jsfa.10337. Epub 2020 Mar 2. PMID: 32077484.

15: Canbay E, Vural M, Kalkan Uçar S, Sezer ED, Karasoy H, Yüceyar AN, Çoker M, Sözmen EY. The decision-making levels of urine tetrasaccharide for the diagnosis of Pompe disease in the Turkish population. J Pediatr Endocrinol Metab. 2020 Mar 26;33(3):391-395. doi: 10.1515/jpem-2019-0393. PMID: 32069240.

16: Visvanathan R, Qader M, Jayathilake C, Jayawardana BC, Liyanage R, Sivakanesan R. Critical review on conventional spectroscopic α-amylase activity detection methods: merits, demerits, and future prospects. J Sci Food Agric. 2020 May;100(7):2836-2847. doi: 10.1002/jsfa.10315. Epub 2020 Feb 22. PMID: 32031680.

17: Wang F, Huang Y, Wu W, Zhu C, Zhang R, Chen J, Zeng J. Metabolomics Analysis of the Peels of Different Colored Citrus Fruits (Citrus reticulata cv. 'Shatangju') During the Maturation Period Based on UHPLC-QQQ-MS. Molecules. 2020 Jan 17;25(2):396. doi: 10.3390/molecules25020396. PMID: 31963595; PMCID: PMC7024170.

18: Salem K, Elgharbi F, Ben Hlima H, Perduca M, Sayari A, Hmida-Sayari A. Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca2+ independent Bacillus subtilis α-amylase. Biotechnol Prog. 2020 Jul;36(4):e2964. doi: 10.1002/btpr.2964. Epub 2020 Feb 14. PMID: 31951110.

19: Visnapuu T, Meldre A, Põšnograjeva K, Viigand K, Ernits K, Alamäe T. Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans. Int J Mol Sci. 2019 Dec 31;21(1):297. doi: 10.3390/ijms21010297. PMID: 31906253; PMCID: PMC6981392.

20: Lira SM, Dionísio AP, Holanda MO, Marques CG, Silva GSD, Correa LC, Santos GBM, de Abreu FAP, Magalhães FEA, Rebouças EL, Guedes JAC, Oliveira DF, Guedes MIF, Zocolo GJ. Metabolic profile of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) by UPLC-QTOF-MSE and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Food Res Int. 2020 Jan;127:108701. doi: 10.1016/j.foodres.2019.108701. Epub 2019 Oct 31. PMID: 31882110.