Mycarose

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 584572

CAS#: 6032-92-4

Description: Mycarose is a sugar epi-axenose to lyxo configeration.


Chemical Structure

img
Mycarose
CAS# 6032-92-4

Theoretical Analysis

MedKoo Cat#: 584572
Name: Mycarose
CAS#: 6032-92-4
Chemical Formula: C7H14O4
Exact Mass: 162.09
Molecular Weight: 162.185
Elemental Analysis: C, 51.84; H, 8.70; O, 39.46

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Mycarose; 3-Epi-axenose

IUPAC/Chemical Name: 2,6-Dideoxy-3-C-methyl-lyxo-hexose

InChi Key: JYAQWANEOPJVEY-LYFYHCNISA-N

InChi Code: InChI=1S/C7H14O4/c1-5(9)6(10)7(2,11)3-4-8/h4-6,9-11H,3H2,1-2H3/t5-,6-,7+/m0/s1

SMILES Code: O=CC[C@@]([C@H]([C@H](C)O)O)(C)O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 162.19 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Roush WR, Hagadorn SM. Synthesis of mycarose and epi-axenose from non-carbohydrate precursors. Carbohydr Res. 1985 Feb 28;136:187-93. PubMed PMID: 4005889.

2: Bate N, Butler AR, Smith IP, Cundliffe E. The mycarose-biosynthetic genes of Streptomyces fradiae, producer of tylosin. Microbiology. 2000 Jan;146 ( Pt 1):139-46. PubMed PMID: 10658660.

3: Takahashi H, Liu YN, Chen H, Liu HW. Biosynthesis of TDP-l-mycarose: the specificity of a single enzyme governs the outcome of the pathway. J Am Chem Soc. 2005 Jul 6;127(26):9340-1. PubMed PMID: 15984840.

4: Summers RG, Donadio S, Staver MJ, Wendt-Pienkowski E, Hutchinson CR, Katz L. Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea that are involved in L-mycarose and D-desosamine production. Microbiology. 1997 Oct;143 ( Pt 10):3251-62. PubMed PMID: 9353926.

5: Takahashi H, Liu YN, Liu HW. A two-stage one-pot enzymatic synthesis of TDP-L-mycarose from thymidine and glucose-1-phosphate. J Am Chem Soc. 2006 Feb 8;128(5):1432-3. PubMed PMID: 16448097; PubMed Central PMCID: PMC2502060.

6: Peirú S, Rodríguez E, Tran CQ, Carney JR, Gramajo H. Characterization of the heterodimeric MegBIIa:MegBIIb aldo-keto reductase involved in the biosynthesis of L-mycarose from Micromonospora megalomicea. Biochemistry. 2007 Jul 10;46(27):8100-9. Epub 2007 Jun 16. PubMed PMID: 17571859.

7: Poulsen SM, Kofoed C, Vester B. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. J Mol Biol. 2000 Dec 1;304(3):471-81. PubMed PMID: 11090288.

8: WATANABE T, FUJII T, SATAKE K. 4-O-Acetyl mycarose. A new O-acetyl sugar obtained from leucomycin minor components. J Biochem. 1961 Sep;50:197-201. PubMed PMID: 14005205.

9: González A, Remsing LL, Lombó F, Fernández MJ, Prado L, Braña AF, Künzel E, Rohr J, Méndez C, Salas JA. The mtmVUC genes of the mithramycin gene cluster in Streptomyces argillaceus are involved in the biosynthesis of the sugar moieties. Mol Gen Genet. 2001 Feb;264(6):827-35. PubMed PMID: 11254130.

10: Zhao Z, Jin L, Xu Y, Zhu D, Liu Y, Liu C, Lei P. Synthesis and antibacterial activity of a series of novel 9-O-acetyl- 4'-substituted 16-membered macrolides derived from josamycin. Bioorg Med Chem Lett. 2014 Jan 15;24(2):480-4. doi: 10.1016/j.bmcl.2013.12.029. Epub 2013 Dec 15. PubMed PMID: 24374276.

11: Salah-Bey K, Doumith M, Michel JM, Haydock S, Cortés J, Leadlay PF, Raynal MC. Targeted gene inactivation for the elucidation of deoxysugar biosynthesis in the erythromycin producer Saccharopolyspora erythraea. Mol Gen Genet. 1998 Mar;257(5):542-53. PubMed PMID: 9563840.

12: Haupt I, Fricke H, Cerná J, Rychlík I. Effect of demycarosylturimycin on ribosomal peptidyltransferase from Escherichia coli. J Antibiot (Tokyo). 1978 Jun;31(6):610-5. PubMed PMID: 355215.

13: Remsing LL, Garcia-Bernardo J, Gonzalez A, Künzel E, Rix U, Braña AF, Bearden DW, Méndez C, Salas JA, Rohr J. Ketopremithramycins and ketomithramycins, four new aureolic acid-type compounds obtained upon inactivation of two genes involved in the biosynthesis of the deoxysugar moieties of the antitumor drug mithramycin by Streptomyces argillaceus, reveal novel insights into post-PKS tailoring steps of the mithramycin biosynthetic pathway. J Am Chem Soc. 2002 Feb 27;124(8):1606-14. PubMed PMID: 11853433; PubMed Central PMCID: PMC4480631.

14: Epp JK, Huber ML, Turner JR, Goodson T, Schoner BE. Production of a hybrid macrolide antibiotic in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene. 1989 Dec 28;85(2):293-301. PubMed PMID: 2628170.

15: Peirú S, Menzella HG, Rodríguez E, Carney J, Gramajo H. Production of the potent antibacterial polyketide erythromycin C in Escherichia coli. Appl Environ Microbiol. 2005 May;71(5):2539-47. PubMed PMID: 15870344; PubMed Central PMCID: PMC1087553.

16: Wang Z, Jian T, Phan LT, Or YS. Synthesis of novel 4'-substituted 16-membered ring macrolide antibiotics derived from leucomycins. Bioorg Med Chem Lett. 2004 Jan 19;14(2):519-21. PubMed PMID: 14698194.

17: Reuter G, Hüttner R, Fricke H. [Physiology and biochemistry of streptomycetes. 4. Isolation and identification of mycarose, mycaminose and desmycarosyl-antibiotic from the macrocide-antibiotic a 6599 (Turimycin)]. Pharmazie. 1976;31(1):48-50. German. PubMed PMID: 1257279.

18: Kurihara K, Kikuchi N, Ajito K. Cladinose analogues of sixteen-membered macrolide antibiotics. III. Efficient synthesis of 4-O-alkyl-L-cladinose analogues: improved antibacterial activities compatible with pharmacokinetics. J Antibiot (Tokyo). 1997 Jan;50(1):32-44. PubMed PMID: 9066764.

19: Pérez M, Baig I, Braña AF, Salas JA, Rohr J, Méndez C. Generation of new derivatives of the antitumor antibiotic mithramycin by altering the glycosylation pattern through combinatorial biosynthesis. Chembiochem. 2008 Sep 22;9(14):2295-304. doi: 10.1002/cbic.200800299. PubMed PMID: 18756551; PubMed Central PMCID: PMC2574993.

20: Jiang M, Zhang H, Park SH, Li Y, Pfeifer BA. Deoxysugar pathway interchange for erythromycin analogues heterologously produced through Escherichia coli. Metab Eng. 2013 Nov;20:92-100. doi: 10.1016/j.ymben.2013.09.005. Epub 2013 Sep 20. PubMed PMID: 24060454.