SRT1460

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 562035

CAS#: 925432-73-1

Description: SRT1460 is an activator of SIRT1.


Chemical Structure

img
SRT1460
CAS# 925432-73-1

Theoretical Analysis

MedKoo Cat#: 562035
Name: SRT1460
CAS#: 925432-73-1
Chemical Formula: C26H29N5O4S
Exact Mass: 507.19
Molecular Weight: 507.600
Elemental Analysis: C, 61.52; H, 5.76; N, 13.80; O, 12.61; S, 6.32

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: SRT1460; SRT-1460; SRT 1460; ANW-57653; ANW 57653; ANW57653;

IUPAC/Chemical Name: 3,4,5-Trimethoxy-N-(2-(3-(piperazin-1-ylmethyl)imidazo[2,1-b]thiazol-6-yl)phenyl)benzamide

InChi Key: SBEWVVLMFLTQFE-UHFFFAOYSA-N

InChi Code: InChI=1S/C26H29N5O4S/c1-33-22-12-17(13-23(34-2)24(22)35-3)25(32)28-20-7-5-4-6-19(20)21-15-31-18(16-36-26(31)29-21)14-30-10-8-27-9-11-30/h4-7,12-13,15-16,27H,8-11,14H2,1-3H3,(H,28,32)

SMILES Code: O=C(NC1=CC=CC=C1C2=CN3C(SC=C3CN4CCNCC4)=N2)C5=CC(OC)=C(OC)C(OC)=C5

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 507.60 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Charles S, Raj V, Arokiaraj J, Mala K. Caveolin1/protein arginine methyltransferase1/sirtuin1 axis as a potential target against endothelial dysfunction. Pharmacol Res. 2017 May;119:1-11. doi: 10.1016/j.phrs.2017.01.022. Epub 2017 Jan 23. Review. PubMed PMID: 28126510.

2: Chini CC, Espindola-Netto JM, Mondal G, Guerrico AM, Nin V, Escande C, Sola-Penna M, Zhang JS, Billadeau DD, Chini EN. SIRT1-Activating Compounds (STAC) Negatively Regulate Pancreatic Cancer Cell Growth and Viability Through a SIRT1 Lysosomal-Dependent Pathway. Clin Cancer Res. 2016 May 15;22(10):2496-507. doi: 10.1158/1078-0432.CCR-15-1760. Epub 2015 Dec 11. PubMed PMID: 26655844; PubMed Central PMCID: PMC4867252.

3: Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, Riera TV, Lee JE, E SY, Lamming DW, Pentelute BL, Schuman ER, Stevens LA, Ling AJ, Armour SM, Michan S, Zhao H, Jiang Y, Sweitzer SM, Blum CA, Disch JS, Ng PY, Howitz KT, Rolo AP, Hamuro Y, Moss J, Perni RB, Ellis JL, Vlasuk GP, Sinclair DA. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 2013 Mar 8;339(6124):1216-9. doi: 10.1126/science.1231097. PubMed PMID: 23471411; PubMed Central PMCID: PMC3799917.

4: Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010 Mar 12;285(11):8340-51. doi: 10.1074/jbc.M109.088682. Epub 2010 Jan 8. PubMed PMID: 20061378; PubMed Central PMCID: PMC2832984.

5: Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007 Nov 29;450(7170):712-6. PubMed PMID: 18046409; PubMed Central PMCID: PMC2753457.