Razuprotafib sodium

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 125567

CAS#: 1809275-69-1 (sodium)

Description: Razuprotafib, also known as AKB-9778, is a protein tyrosine phosphatase ß (HPTPß) inhibitor. AKB-9778 is a known VE-PTP inhibitor that can effectively interact with the active site of VE-PTP to inhibit the activity of VE-PTP.. AKB-9778 may function through reducing serum angiopoietin 2 level and regulating EC viability. AKB-9778 Improved Antitumor Activity and Diminishes the Toxicity of Interleukin 2 (IL-2) Administration. AKB-9778 significantly lowered systolic and diastolic blood pressure.


Chemical Structure

img
Razuprotafib sodium
CAS# 1809275-69-1 (sodium)

Theoretical Analysis

MedKoo Cat#: 125567
Name: Razuprotafib sodium
CAS#: 1809275-69-1 (sodium)
Chemical Formula: C26H25N4NaO6S3
Exact Mass: 608.08
Molecular Weight: 608.680
Elemental Analysis: C, 51.31; H, 4.14; N, 9.20; Na, 3.78; O, 15.77; S, 15.80

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Related CAS #: 1809275-69-1 (sodium)   1008510-37-9 (free base)  

Synonym: Razuprotafib sodium; 3988DRR60T; 1809275-69-1; Carbamic acid, N-((1S)-2-oxo-1-(phenylmethyl)-2-(((1S)-2-(4-(sulfoamino)phenyl)-1-(2-(2-thienyl)-4-thiazolyl)ethyl)amino)ethyl)-, C-methyl ester, sodium salt; UNII-3988DRR60T

IUPAC/Chemical Name: sodium (4-((S)-2-((S)-2-((methoxycarbonyl)amino)-3-phenylpropanamido)-2-(2-(thiophen-2-yl)thiazol-4-yl)ethyl)phenyl)sulfamate

InChi Key: FXNDNMZPAYMZNC-GUTACTQSSA-M

InChi Code: InChI=1S/C26H26N4O6S3.Na/c1-36-26(32)29-21(15-17-6-3-2-4-7-17)24(31)27-20(22-16-38-25(28-22)23-8-5-13-37-23)14-18-9-11-19(12-10-18)30-39(33,34)35;/h2-13,16,20-21,30H,14-15H2,1H3,(H,27,31)(H,29,32)(H,33,34,35);/q;+1/p-1/t20-,21-;/m0./s1

SMILES Code: [Na+].COC(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC2=CC=C(NS([O-])(=O)=O)C=C2)C3=CSC(=N3)C4=CC=CS4

Appearance: To be determined

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 -4 C for short term (days to weeks) or -20 C for long term(months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 608.68 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Ferro Desideri L, Traverso CE, Nicolò M. The emerging role of the Angiopoietin-Tie pathway as therapeutic target for treating retinal diseases. Expert Opin Ther Targets. 2022 Feb;26(2):145-154. doi: 10.1080/14728222.2022.2036121. Epub 2022 Feb 7. PMID: 35098845.


2: Schmaier AA, Pajares Hurtado GM, Manickas-Hill ZJ, Sack KD, Chen SM, Bhambhani V, Quadir J, Nath AK, Collier AY, Ngo D, Barouch DH, Shapiro NI, Gerszten RE, Yu XG; MGH COVID-19 Collection and Processing Team; Peters KG, Flaumenhaft R, Parikh SM. Tie2 activation protects against prothrombotic endothelial dysfunction in COVID-19. JCI Insight. 2021 Oct 22;6(20):e151527. doi: 10.1172/jci.insight.151527. PMID: 34506304; PMCID: PMC8564889.


3: Camilleri P, Soldo B, Buch A, Janusz J. Oxidative metabolism of razuprotafib (AKB-9778), a sulfamic acid phosphatase inhibitor, in human microsomes and recombinant human CYP2C8 enzyme. Xenobiotica. 2021 Oct;51(10):1110-1121. doi: 10.1080/00498254.2021.1969482. Epub 2021 Sep 3. PMID: 34477046.


4: Soldo BL, Camilleri P, Buch A, Janusz J. The in vivo disposition of subcutaneous injected 14C-razuprotafib (14C-AKB-9778), a sulphamic acid phosphatase inhibitor, in nonclinical species and human. Xenobiotica. 2021 Oct;51(10):1132-1145. doi: 10.1080/00498254.2021.1972358. Epub 2021 Sep 1. PMID: 34420473.


5: Schmaier AA, Hurtado GP, Manickas-Hill ZJ, Sack KD, Chen SM, Bhambhani V, Quadir J, Nath AK, Collier AY, Ngo D, Barouch DH, Gerszten RE, Yu XG; MGH COVID-19 Collection and Processing Team; Peters K, Flaumenhaft R, Parikh SM. Tie2 activation protects against prothrombotic endothelial dysfunction in COVID-19. medRxiv [Preprint]. 2021 May 17:2021.05.13.21257070. doi: 10.1101/2021.05.13.21257070. Update in: JCI Insight. 2021 Sep 10;: PMID: 34031665; PMCID: PMC8142666.


6: Justo AFO, Afonso PPL. The role of vascular endothelial protein tyrosine phosphatase on nitric oxide synthase function in diabetes: from molecular biology to the clinic. J Cell Commun Signal. 2021 Sep;15(3):467-471. doi: 10.1007/s12079-021-00611-9. Epub 2021 Mar 8. PMID: 33683570; PMCID: PMC8222474.


7: Li G, Nottebaum AF, Brigell M, Navarro ID, Ipe U, Mishra S, Gomez-Caraballo M, Schmitt H, Soldo B, Pakola S, Withers B, Peters KG, Vestweber D, Stamer WD. A Small Molecule Inhibitor of VE-PTP Activates Tie2 in Schlemm's Canal Increasing Outflow Facility and Reducing Intraocular Pressure. Invest Ophthalmol Vis Sci. 2020 Dec 1;61(14):12. doi: 10.1167/iovs.61.14.12. PMID: 33315051; PMCID: PMC7735951.


8: Siragusa M, Oliveira Justo AF, Malacarne PF, Strano A, Buch A, Withers B, Peters KG, Fleming I. VE-PTP inhibition elicits eNOS phosphorylation to blunt endothelial dysfunction and hypertension in diabetes. Cardiovasc Res. 2021 May 25;117(6):1546-1556. doi: 10.1093/cvr/cvaa213. PMID: 32653904.


9: Custo Greig E, Brigell M, Cao F, Levine ES, Peters K, Moult EM, Fujimoto JG, Waheed NK. Macular and Peripapillary Optical Coherence Tomography Angiography Metrics Predict Progression in Diabetic Retinopathy: A Sub-analysis of TIME-2b Study Data. Am J Ophthalmol. 2020 Nov;219:66-76. doi: 10.1016/j.ajo.2020.06.009. Epub 2020 Jun 20. PMID: 32574773.


10: Hussain RM, Neiweem AE, Kansara V, Harris A, Ciulla TA. Tie-2/Angiopoietin pathway modulation as a therapeutic strategy for retinal disease. Expert Opin Investig Drugs. 2019 Oct;28(10):861-869. doi: 10.1080/13543784.2019.1667333. Epub 2019 Sep 26. PMID: 31513439.


11: Drexler HCA, Vockel M, Polaschegg C, Frye M, Peters K, Vestweber D. Vascular Endothelial Receptor Tyrosine Phosphatase: Identification of Novel Substrates Related to Junctions and a Ternary Complex with EPHB4 and TIE2. Mol Cell Proteomics. 2019 Oct;18(10):2058-2077. doi: 10.1074/mcp.RA119.001716. Epub 2019 Aug 19. PMID: 31427368; PMCID: PMC6773558.


12: Li G, Sachdev U, Peters K, Liang X, Lotze MT. The VE-PTP Inhibitor AKB-9778 Improves Antitumor Activity and Diminishes the Toxicity of Interleukin 2 (IL-2) Administration. J Immunother. 2019 Sep;42(7):237-243. doi: 10.1097/CJI.0000000000000290. PMID: 31348125; PMCID: PMC8088541.


13: Liu WS, Wang RR, Sun YZ, Li WY, Li HL, Liu CL, Ma Y, Wang RL. Exploring the effect of inhibitor AKB-9778 on VE-PTP by molecular docking and molecular dynamics simulation. J Cell Biochem. 2019 Oct;120(10):17015-17029. doi: 10.1002/jcb.28963. Epub 2019 May 24. PMID: 31125141.


14: Fouli GE, Gnudi L. The Future: Experimental Therapies for Renal Disease in Diabetes. Nephron. 2019;143(1):3-7. doi: 10.1159/000492825. Epub 2018 Sep 26. PMID: 30257247.


15: Campochiaro PA, Peters KG. Targeting Tie2 for Treatment of Diabetic Retinopathy and Diabetic Macular Edema. Curr Diab Rep. 2016 Dec;16(12):126. doi: 10.1007/s11892-016-0816-5. PMID: 27778249.


16: Campochiaro PA, Khanani A, Singer M, Patel S, Boyer D, Dugel P, Kherani S, Withers B, Gambino L, Peters K, Brigell M; TIME-2 Study Group. Enhanced Benefit in Diabetic Macular Edema from AKB-9778 Tie2 Activation Combined with Vascular Endothelial Growth Factor Suppression. Ophthalmology. 2016 Aug;123(8):1722-1730. doi: 10.1016/j.ophtha.2016.04.025. Epub 2016 May 26. PMID: 27236272.


17: Frye M, Dierkes M, Küppers V, Vockel M, Tomm J, Zeuschner D, Rossaint J, Zarbock A, Koh GY, Peters K, Nottebaum AF, Vestweber D. Interfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE- cadherin. J Exp Med. 2015 Dec 14;212(13):2267-87. doi: 10.1084/jem.20150718. Epub 2015 Dec 7. PMID: 26642851; PMCID: PMC4689167.


18: Campochiaro PA, Sophie R, Tolentino M, Miller DM, Browning D, Boyer DS, Heier JS, Gambino L, Withers B, Brigell M, Peters K. Treatment of diabetic macular edema with an inhibitor of vascular endothelial-protein tyrosine phosphatase that activates Tie2. Ophthalmology. 2015 Mar;122(3):545-54. doi: 10.1016/j.ophtha.2014.09.023. Epub 2014 Nov 12. PMID: 25439435.


19: Shen J, Frye M, Lee BL, Reinardy JL, McClung JM, Ding K, Kojima M, Xia H, Seidel C, Lima e Silva R, Dong A, Hackett SF, Wang J, Howard BW, Vestweber D, Kontos CD, Peters KG, Campochiaro PA. Targeting VE-PTP activates TIE2 and stabilizes the ocular vasculature. J Clin Invest. 2014 Oct;124(10):4564-76. doi: 10.1172/JCI74527. Epub 2014 Sep 2. PMID: 25180601; PMCID: PMC4191011.


20: Goel S, Gupta N, Walcott BP, Snuderl M, Kesler CT, Kirkpatrick ND, Heishi T, Huang Y, Martin JD, Ager E, Samuel R, Wang S, Yazbek J, Vakoc BJ, Peterson RT, Padera TP, Duda DG, Fukumura D, Jain RK. Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J Natl Cancer Inst. 2013 Aug 21;105(16):1188-201. doi: 10.1093/jnci/djt164. Epub 2013 Jul 30. Erratum in: J Natl Cancer Inst. 2013 Nov 20;105(22):1762. PMID: 23899555; PMCID: PMC3748004.