Chlordiazepoxide

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 317504

CAS#: 58-25-3

Description: Chlordiazepoxide is a sedative/hypnotic drug and benzodiazepine. Chlordiazepoxide was the first benzodiazepine to be synthesized and the discovery of chlordiazepoxide was by pure chance. Chlordiazepoxide and other benzodiazepines were initially accepted with widespread public approval but were followed with widespread public disapproval and recommendations for more restrictive medical guidelines for its use. Chlordiazepoxide has a medium to long half-life but its active metabolite has a very long half-life. The drug has amnestic, anticonvulsant, anxiolytic, hypnotic and skeletal muscle relaxant properties. Chlordiazepoxide is discontinued.


Chemical Structure

img
Chlordiazepoxide
CAS# 58-25-3

Theoretical Analysis

MedKoo Cat#: 317504
Name: Chlordiazepoxide
CAS#: 58-25-3
Chemical Formula: C11H12Cl2N2O5
Exact Mass:
Molecular Weight: 323.13
Elemental Analysis: C, 40.89; H, 3.74; Cl, 21.94; N, 8.67; O, 24.76

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Chlordiazepoxide; Chlornitromycin; NSC 3069; Chloromycetin; Levomycetin; Chlorocid; Globenicol; Kloramfenikol; Levomycetin; Ophthochlor; Syntomycin;

IUPAC/Chemical Name: 2,2-dichloro-N-[(1R,2R)-1,3-dihydroxy-1-(4-nitrophenyl)propan-2-yl]acetamide

InChi Key: WIIZWVCIJKGZOK-UHFFFAOYSA-N

InChi Code: InChI=1S/C11H12Cl2N2O5/c12-10(13)11(18)14-8(5-16)9(17)6-1-3-7(4-2-6)15(19)20/h1-4,8-10,16-17H,5H2,(H,14,18)

SMILES Code: C1=CC(=CC=C1C(C(CO)NC(=O)C(Cl)Cl)O)[N+](=O)[O-]

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO, not in water

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight 323.13 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Chu W, Krasner SW, Gao N, Templeton MR, Yin D. The contribution of the
antibiotic chloramphenicol and its analogues as precursors of dichloroacetamide
and other disinfection byproducts in drinking water. Environ Sci Technol. 2015
Dec 4. [Epub ahead of print] PubMed PMID: 26636179.

2: Wenhai C, Tengfei C, Erdeng D, Deng Y, Yingqing G, Naiyun G. Increased
formation of halomethanes during chlorination of chloramphenicol in drinking
water by UV irradiation, persulfate oxidation, and combined UV/persulfate
pre-treatments. Ecotoxicol Environ Saf. 2016 Feb;124:147-154. doi:
10.1016/j.ecoenv.2015.10.016. Epub 2015 Oct 26. PubMed PMID: 26513530.

3: Lofrano G, Libralato G, Adinolfi R, Siciliano A, Iannece P, Guida M, Giugni M,
Volpi Ghirardini A, Carotenuto M. Photocatalytic degradation of the antibiotic
chloramphenicol and effluent toxicity effects. Ecotoxicol Environ Saf. 2016
Jan;123:65-71. doi: 10.1016/j.ecoenv.2015.07.039. Epub 2015 Aug 7. PubMed PMID:
26256248.

4: Feng X, Gan N, Zhang H, Yan Q, Li T, Cao Y, Hu F, Yu H, Jiang Q. A novel
"dual-potential" electrochemiluminescence aptasensor array using CdS quantum dots
and luminol-gold nanoparticles as labels for simultaneous detection of malachite
green and chloramphenicol. Biosens Bioelectron. 2015 Dec 15;74:587-93. doi:
10.1016/j.bios.2015.06.048. Epub 2015 Jun 29. PubMed PMID: 26190470.

5: Franchino A, Jakubec P, Dixon DJ. Enantioselective synthesis of
(-)-chloramphenicol via silver-catalysed asymmetric isocyanoacetate aldol
reaction. Org Biomol Chem. 2015 Dec 15;14(1):93-96. PubMed PMID: 26510469.

6: Wang Y, Li X, Zhang Z, Ding S, Jiang H, Li J, Shen J, Xia X. Simultaneous
determination of nitroimidazoles, benzimidazoles, and chloramphenicol components
in bovine milk by ultra-high performance liquid chromatography-tandem mass
spectrometry. Food Chem. 2016 Feb 1;192:280-7. doi:
10.1016/j.foodchem.2015.07.033. Epub 2015 Jul 8. PubMed PMID: 26304348.

7: Lu Y, Yao H, Li C, Han J, Tan Z, Yan Y. Separation, concentration and
determination of trace chloramphenicol in shrimp from different waters by using
polyoxyethylene lauryl ether-salt aqueous two-phase system coupled with
high-performance liquid chromatography. Food Chem. 2016 Feb 1;192:163-70. doi:
10.1016/j.foodchem.2015.06.086. Epub 2015 Jul 3. PubMed PMID: 26304334.

8: Liu Y, Yan K, Okoth OK, Zhang J. A label-free photoelectrochemical aptasensor
based on nitrogen-doped graphene quantum dots for chloramphenicol determination.
Biosens Bioelectron. 2015 Dec 15;74:1016-21. doi: 10.1016/j.bios.2015.07.067.
Epub 2015 Jul 30. PubMed PMID: 26264269.

9: Yan Z, Gan N, Wang D, Cao Y, Chen M, Li T, Chen Y. A "signal-on'' aptasensor
for simultaneous detection of chloramphenicol and polychlorinated biphenyls using
multi-metal ions encoded nanospherical brushes as tracers. Biosens Bioelectron.
2015 Dec 15;74:718-24. doi: 10.1016/j.bios.2015.07.024. Epub 2015 Jul 16. PubMed
PMID: 26210469.

10: Abnous K, Danesh NM, Ramezani M, Emrani AS, Taghdisi SM. A novel colorimetric
sandwich aptasensor based on an indirect competitive enzyme-free method for
ultrasensitive detection of chloramphenicol. Biosens Bioelectron. 2015 Nov
12;78:80-86. doi: 10.1016/j.bios.2015.11.028. [Epub ahead of print] PubMed PMID:
26599477.

11: He J, Cui J. Malachite green and chloramphenicol in aquatic products from
regions around Dongting Lake in Hunan, China. Food Addit Contam Part B Surveill.
2015 Nov 24:1-6. [Epub ahead of print] PubMed PMID: 26496159.

12: Yang T, Chen H, Ge T, Wang J, Li W, Jiao K. Highly sensitive determination of
chloramphenicol based on thin-layered MoS2/polyaniline nanocomposite. Talanta.
2015 Nov 1;144:1324-8. doi: 10.1016/j.talanta.2015.08.004. Epub 2015 Aug 3.
PubMed PMID: 26452965.

13: KuKanich B, KuKanich K. Chloramphenicol significantly affects the
pharmacokinetics of oral methadone in Greyhound dogs. Vet Anaesth Analg. 2015
Nov;42(6):597-607. doi: 10.1111/vaa.12257. Epub 2015 Mar 2. PubMed PMID:
25733012.

14: Yan W, Yang L, Zhuang H, Wu H, Zhang J. Engineered "hot" core-shell
nanostructures for patterned detection of chloramphenicol. Biosens Bioelectron.
2015 Nov 4;78:67-72. doi: 10.1016/j.bios.2015.11.011. [Epub ahead of print]
PubMed PMID: 26594888.

15: Ebarvia BS, Ubando IE, Sevilla FB 3rd. Biomimetic piezoelectric quartz
crystal sensor with chloramphenicol-imprinted polymer sensing layer. Talanta.
2015 Nov 1;144:1260-5. doi: 10.1016/j.talanta.2015.08.001. Epub 2015 Aug 6.
PubMed PMID: 26452956.

16: Black LA, Higgins DP, Govendir M. In vitro activity of chloramphenicol,
florfenicol and enrofloxacin against Chlamydia pecorum isolated from koalas
(Phascolarctos cinereus). Aust Vet J. 2015 Nov;93(11):420-3. doi:
10.1111/avj.12364. Epub 2015 Sep 27. PubMed PMID: 26412342.

17: Thomseth V, Cejvanovic V, Jimenez-Solem E, Petersen KM, Poulsen HE, Andersen
JT. Exposure to topical chloramphenicol during pregnancy and the risk of
congenital malformations: a Danish nationwide cohort study. Acta Ophthalmol. 2015
Nov;93(7):651-3. doi: 10.1111/aos.12737. Epub 2015 Apr 28. PubMed PMID: 25923453.

18: Xiao Z, Song R, Rao Z, Wei S, Jia Z, Suo D, Fan X. Development of a
subcritical water extraction approach for trace analysis of chloramphenicol,
thiamphenicol, florfenicol, and florfenicol amine in poultry tissues. J
Chromatogr A. 2015 Oct 30;1418:29-35. doi: 10.1016/j.chroma.2015.09.047. Epub
2015 Sep 24. PubMed PMID: 26433266.

19: Hao L, Duan N, Wu S, Xu B, Wang Z. Chemiluminescent aptasensor for
chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized
flower-like gold nanostructures and magnetic nanoparticles. Anal Bioanal Chem.
2015 Oct;407(26):7907-15. doi: 10.1007/s00216-015-8957-y. Epub 2015 Aug 22.
PubMed PMID: 26297462.

20: Tan Z, Xu H, Li G, Yang X, Choi MM. Fluorescence quenching for
chloramphenicol detection in milk based on protein-stabilized Au nanoclusters.
Spectrochim Acta A Mol Biomol Spectrosc. 2015 Oct 5;149:615-20. doi:
10.1016/j.saa.2015.04.109. Epub 2015 May 8. PubMed PMID: 25985125.