WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 558235

CAS#: 56-75-7 (free)

Description: Chloramphenicol is a bacteriostatic antibiotic that inhibits bacterial protein synthesis. It is usually bacteristatic and effective against a wide range of gram-positive and gram-negative organisms. Chloramphenicol is used as a selection agent for transformed cells containing chloramphenicol resistance genes. Chloramphenicol exhibits anti-rickettsial activity and is also active against chlamydias of the psittacosis-lymphogranuloma group.

Chemical Structure

CAS# 56-75-7 (free)

Theoretical Analysis

MedKoo Cat#: 558235
Name: Chloramphenicol
CAS#: 56-75-7 (free)
Chemical Formula: C11H12Cl2N2O5
Exact Mass: 322.0123
Molecular Weight: 323.13
Elemental Analysis: C, 40.89; H, 3.74; Cl, 21.94; N, 8.67; O, 24.76

Price and Availability

Size Price Availability Quantity
1.0g USD 150.0 2 Weeks
2.0g USD 190.0 2 Weeks
5.0g USD 250.0 2 Weeks
10.0g USD 350.0 2 Weeks
20.0g USD 450.0 2 Weeks
50.0g USD 550.0 2 Weeks
100.0g USD 650.0 2 Weeks
200.0g USD 950.0 2 Weeks
500.0g USD 1450.0 2 Weeks
1.0kg USD 2150.0 2 Weeks
Click to view more sizes and prices
Bulk inquiry

Related CAS #: 31342-36-6 (pantothenate complex)   982-57-0 (sodium succinate)   3544-94-3 (succinate)   16255-48-4 (stearate)   530-43-8 (palmitate)   716-61-0 (base)   56-75-7 (free)    

Synonym: Chloramphenicol; Chlornitromycin; Chloromycetin; Levomycetin; Chlorocid; Globenicol; Detreomycin; Kloramfenikol; Levomycetin; Ophthochlor; Syntomycin;

IUPAC/Chemical Name: 2,2-dichloro-N-[(1R,2R)-1,3-dihydroxy-1-(4-nitrophenyl)propan-2-yl]acetamide


InChi Code: InChI=1S/C11H12Cl2N2O5/c12-10(13)11(18)14-8(5-16)9(17)6-1-3-7(4-2-6)15(19)20/h1-4,8-10,16-17H,5H2,(H,14,18)/t8-,9-/m1/s1

SMILES Code: C1=CC(=CC=C1C(C(CO)NC(=O)C(Cl)Cl)O)[N+](=O)[O-]

Appearance: White to off-white crystalline powder.

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO, not in water

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight 323.13 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.


Dilution Calculator

Calculate the dilution required to prepare a stock solution.

1: Chu W, Krasner SW, Gao N, Templeton MR, Yin D. The contribution of the
antibiotic chloramphenicol and its analogues as precursors of dichloroacetamide
and other disinfection byproducts in drinking water. Environ Sci Technol. 2015
Dec 4. [Epub ahead of print] PubMed PMID: 26636179.

2: Vetrova EV, Lekar AV, Filonova OV, Borisenko SN, Maksimenko EV, Borisenko NI.
Study of molecular complexation of glycyrrhizic acid with chloramphenicol by
electrospray ionization mass spectrometry. J Nat Sci Biol Med. 2015 Aug;6(Suppl
1):S40-3. doi: 10.4103/0976-9668.166070. PubMed PMID: 26604617; PubMed Central
PMCID: PMC4630761.

3: Abnous K, Danesh NM, Ramezani M, Emrani AS, Taghdisi SM. A novel colorimetric
sandwich aptasensor based on an indirect competitive enzyme-free method for
ultrasensitive detection of chloramphenicol. Biosens Bioelectron. 2015 Nov
12;78:80-86. doi: 10.1016/j.bios.2015.11.028. [Epub ahead of print] PubMed PMID:

4: Yan W, Yang L, Zhuang H, Wu H, Zhang J. Engineered "hot" core-shell
nanostructures for patterned detection of chloramphenicol. Biosens Bioelectron.
2015 Nov 4;78:67-72. doi: 10.1016/j.bios.2015.11.011. [Epub ahead of print]
PubMed PMID: 26594888.

5: Wenhai C, Tengfei C, Erdeng D, Deng Y, Yingqing G, Naiyun G. Increased
formation of halomethanes during chlorination of chloramphenicol in drinking
water by UV irradiation, persulfate oxidation, and combined UV/persulfate
pre-treatments. Ecotoxicol Environ Saf. 2015 Oct 26;124:147-154. doi:
10.1016/j.ecoenv.2015.10.016. [Epub ahead of print] PubMed PMID: 26513530.

6: Franchino A, Jakubec P, Dixon DJ. Enantioselective synthesis of
(-)-chloramphenicol via silver-catalysed asymmetric isocyanoacetate aldol
reaction. Org Biomol Chem. 2015 Oct 29. [Epub ahead of print] PubMed PMID:

7: He J, Cui J. Malachite green and chloramphenicol in aquatic products from
regions around Dongting Lake in Hunan, China. Food Addit Contam Part B Surveill.
2015 Nov 24:1-6. [Epub ahead of print] PubMed PMID: 26496159.

8: Yang T, Chen H, Ge T, Wang J, Li W, Jiao K. Highly sensitive determination of
chloramphenicol based on thin-layered MoS2/polyaniline nanocomposite. Talanta.
2015 Nov 1;144:1324-8. doi: 10.1016/j.talanta.2015.08.004. Epub 2015 Aug 3.
PubMed PMID: 26452965.

9: Ebarvia BS, Ubando IE, Sevilla FB 3rd. Biomimetic piezoelectric quartz crystal
sensor with chloramphenicol-imprinted polymer sensing layer. Talanta. 2015 Nov
1;144:1260-5. doi: 10.1016/j.talanta.2015.08.001. Epub 2015 Aug 6. PubMed PMID:

10: Choi I, Kim DE, Ahn JH, Yeo WS. On-chip enzymatic assay for chloramphenicol
acetyltransferase using matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry. Colloids Surf B Biointerfaces. 2015 Sep
30;136:465-469. doi: 10.1016/j.colsurfb.2015.09.052. [Epub ahead of print] PubMed
PMID: 26448379.

11: Chanta C, Phloenchaiwanit P. Randomized Controlled Trial of Azithromycin
versus Doxycycline or Chloramphenicol for Treatment of Uncomplicated Pediatric
Scrub Typhus. J Med Assoc Thai. 2015 Aug;98(8):756-60. PubMed PMID: 26437532.

12: Xiao Z, Song R, Rao Z, Wei S, Jia Z, Suo D, Fan X. Development of a
subcritical water extraction approach for trace analysis of chloramphenicol,
thiamphenicol, florfenicol, and florfenicol amine in poultry tissues. J
Chromatogr A. 2015 Oct 30;1418:29-35. doi: 10.1016/j.chroma.2015.09.047. Epub
2015 Sep 24. PubMed PMID: 26433266.

13: Black LA, Higgins DP, Govendir M. In vitro activity of chloramphenicol,
florfenicol and enrofloxacin against Chlamydia pecorum isolated from koalas
(Phascolarctos cinereus). Aust Vet J. 2015 Nov;93(11):420-3. doi:
10.1111/avj.12364. Epub 2015 Sep 27. PubMed PMID: 26412342.

14: González-Prieto C, Agúndez L, Llosa M. Chloramphenicol Selection of IS10
Transposition in the cat Promoter Region of Widely Used Cloning Vectors. PLoS
One. 2015 Sep 16;10(9):e0138615. doi: 10.1371/journal.pone.0138615. eCollection
2015. PubMed PMID: 26375469; PubMed Central PMCID: PMC4574204.

15: Wang Y, Li X, Zhang Z, Ding S, Jiang H, Li J, Shen J, Xia X. Simultaneous
determination of nitroimidazoles, benzimidazoles, and chloramphenicol components
in bovine milk by ultra-high performance liquid chromatography-tandem mass
spectrometry. Food Chem. 2016 Feb 1;192:280-7. doi:
10.1016/j.foodchem.2015.07.033. Epub 2015 Jul 8. PubMed PMID: 26304348.

16: Lu Y, Yao H, Li C, Han J, Tan Z, Yan Y. Separation, concentration and
determination of trace chloramphenicol in shrimp from different waters by using
polyoxyethylene lauryl ether-salt aqueous two-phase system coupled with
high-performance liquid chromatography. Food Chem. 2016 Feb 1;192:163-70. doi:
10.1016/j.foodchem.2015.06.086. Epub 2015 Jul 3. PubMed PMID: 26304334.

17: Hao L, Duan N, Wu S, Xu B, Wang Z. Chemiluminescent aptasensor for
chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized
flower-like gold nanostructures and magnetic nanoparticles. Anal Bioanal Chem.
2015 Oct;407(26):7907-15. doi: 10.1007/s00216-015-8957-y. Epub 2015 Aug 22.
PubMed PMID: 26297462.

18: Kostopoulou ON, Magoulas GE, Papadopoulos GE, Mouzaki A, Dinos GP,
Papaioannou D, Kalpaxis DL. Synthesis and evaluation of chloramphenicol
homodimers: molecular target, antimicrobial activity, and toxicity against human
cells. PLoS One. 2015 Aug 12;10(8):e0134526. doi: 10.1371/journal.pone.0134526.
eCollection 2015. PubMed PMID: 26267355; PubMed Central PMCID: PMC4533973.

19: Liu Y, Yan K, Okoth OK, Zhang J. A label-free photoelectrochemical aptasensor
based on nitrogen-doped graphene quantum dots for chloramphenicol determination.
Biosens Bioelectron. 2015 Dec 15;74:1016-21. doi: 10.1016/j.bios.2015.07.067.
Epub 2015 Jul 30. PubMed PMID: 26264269.

20: Lofrano G, Libralato G, Adinolfi R, Siciliano A, Iannece P, Guida M, Giugni
M, Volpi Ghirardini A, Carotenuto M. Photocatalytic degradation of the antibiotic
chloramphenicol and effluent toxicity effects. Ecotoxicol Environ Saf. 2016
Jan;123:65-71. doi: 10.1016/j.ecoenv.2015.07.039. Epub 2015 Aug 7. PubMed PMID: