WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 202950

CAS#: 75747-14-7

Description: Tanespimycin, also known as 17-AAG, is an orally bioavailable, small-molecule inhibitor of several receptor protein tyrosine kinases with potential antiangiogenic and antineoplastic activities. Telatinib binds to and inhibits the vascular endothelial growth factor receptors (VEGFRs) type 2 and 3, platelet-derived growth factor receptor beta (PDGFRb) and c-Kit, which may result in the inhibition of angiogenesis and cellular proliferation in tumors in which these receptors are upregulated. These telatinib-inhibited receptor protein tyrosine kinases are overexpressed or mutated in many tumor cell types and may play key roles in tumor angiogenesis and tumor cell proliferation.

Chemical Structure

CAS# 75747-14-7

Theoretical Analysis

MedKoo Cat#: 202950
Name: Tanespimycin
CAS#: 75747-14-7
Chemical Formula: C31H43N3O8
Exact Mass: 585.30502
Molecular Weight: 585.69
Elemental Analysis: C, 63.57; H, 7.40; N, 7.17; O, 21.85

Price and Availability

Size Price Availability Quantity
10.0mg USD 120.0 Same day
25.0mg USD 250.0 Same day
50.0mg USD 450.0 Same day
100.0mg USD 750.0 Same day
200.0mg USD 1250.0 Same day
500.0mg USD 1950.0 2 Weeks
1.0g USD 2950.0 2 Weeks
2.0g USD 5250.0 2 Weeks
Click to view more sizes and prices
Bulk inquiry

Synonym: 17-AAG, 17 AAG, 17AAG, BAY 57-9352, BAY 579352, BAY579352, KOS-953, KOS-953, KOS-953, Tanespimycin

IUPAC/Chemical Name: (4E,6E,8S,9S,10E,12S,13R,14S,16R)-19-(allylamino)-13-hydroxy-8,14-dimethoxy-4,10,12,16-tetramethyl-3,20,22-trioxo-2-azabicyclo[16.3.1]docosa-1(21),4,6,10,18-pentaen-9-yl carbamate.


InChi Code: InChI=1S/C31H43N3O8/c1-8-12-33-26-21-13-17(2)14-25(41-7)27(36)19(4)15-20(5)29(42-31(32)39)24(40-6)11-9-10-18(3)30(38)34-22(28(21)37)16-23(26)35/h8-11,15-17,19,24-25,27,29,33,36H,1,12-14H2,2-7H3,(H2,32,39)(H,34,38)/b11-9+,18-10+,20-15+/t17-,19+,24+,25+,27-,29+/m1/s1

SMILES Code: NC(O[C@@H](/C(C)=C/[C@H](C)[C@@H](O)[C@@H](OC)C[C@H](C)CC1=C2NCC=C)[C@@H](OC)/C=C/C=C(C)/C(NC(C1=O)=CC2=O)=O)=O

Appearance: Purple crystalline solid

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO, not in water

Shelf Life: >5 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Certificate of Analysis:

Safety Data Sheet (SDS):

Preparing Stock Solutions

The following data is based on the product molecular weight 585.69 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.


Dilution Calculator

Calculate the dilution required to prepare a stock solution.

1: Chen SZ, Chen XM, Li YQ, Yang S, Mo XY, Zhang F, Mo KL, Ding Y. [Inhibitory effect of 17-AAG combined with paclitaxel on proliferation of esophageal squamous cell carcinoma Eca-109 cells in vitro]. Nan Fang Yi Ke Da Xue Xue Bao. 2015 Jun 20;35(6):844-7. Chinese. PubMed PMID: 26111682.

2: Yun IS, Lee MH, Rah DK, Lew DH, Park JC, Lee WJ. Heat Shock Protein 90 Inhibitor (17-AAG) Induces Apoptosis and Decreases Cell Migration/Motility of Keloid Fibroblasts. Plast Reconstr Surg. 2015 Jul;136(1):44e-53e. doi: 10.1097/PRS.0000000000001362. PubMed PMID: 26111331.

3: Xiao Y, Guan J. 17-AAG enhances the cytotoxicity of flavopiridol in mantle cell lymphoma via autophagy suppression. Neoplasma. 2015;62(3):391-7. doi: 10.4149/neo_2015_047. PubMed PMID: 25866220.

4: Li J, Yang F, Guo J, Zhang R, Xing X, Qin X. 17-AAG post-treatment ameliorates memory impairment and hippocampal CA1 neuronal autophagic death induced by transient global cerebral ischemia. Brain Res. 2015 Jun 12;1610:80-8. doi: 10.1016/j.brainres.2015.03.051. Epub 2015 Apr 7. PubMed PMID: 25858486.

5: Ye XY, Luo QQ, Xu YH, Tang NW, Niu XM, Li ZM, Shen SP, Lu S, Chen ZW. 17-AAG suppresses growth and invasion of lung adenocarcinoma cells via regulation of the LATS1/YAP pathway. J Cell Mol Med. 2015 Mar;19(3):651-63. doi: 10.1111/jcmm.12469. PubMed PMID: 25712415; PubMed Central PMCID: PMC4369821.

6: Xu Y, Zhu Q, Chen D, Shen Z, Wang W, Ning G, Zhu Y. The HSP90 inhibitor 17-AAG exhibits potent antitumor activity for pheochromocytoma in a xenograft model. Tumour Biol. 2015 Feb 15. [Epub ahead of print] PubMed PMID: 25682284.

7: Desale SS, Raja SM, Kim JO, Mohapatra B, Soni KS, Luan H, Williams SH, Bielecki TA, Feng D, Storck M, Band V, Cohen SM, Band H, Bronich TK. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models. J Control Release. 2015 Jun 28;208:59-66. doi: 10.1016/j.jconrel.2015.02.001. Epub 2015 Feb 3. PubMed PMID: 25660204; PubMed Central PMCID: PMC4430376.

8: Lee KH, Jang AH, Yoo CG. 17-AAG Enhances PS-341-Induced Lung Cancer Cell Death by Blocking the NF-κB and PI3K/Akt Pathways. Am J Respir Cell Mol Biol. 2015 Jan 29. [Epub ahead of print] PubMed PMID: 25633180.

9: Mayor-López L, Tristante E, Carballo-Santana M, Carrasco-García E, Grasso S, García-Morales P, Saceda M, Luján J, García-Solano J, Carballo F, de Torre C, Martínez-Lacaci I. Comparative Study of 17-AAG and NVP-AUY922 in Pancreatic and Colorectal Cancer Cells: Are There Common Determinants of Sensitivity? Transl Oncol. 2014 Oct 24;7(5):590-604. doi: 10.1016/j.tranon.2014.08.001. eCollection 2014 Oct. PubMed PMID: 25389454; PubMed Central PMCID: PMC4225658.

10: Santos DM, Petersen AL, Celes FS, Borges VM, Veras PS, de Oliveira CI. Chemotherapeutic potential of 17-AAG against cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis. PLoS Negl Trop Dis. 2014 Oct 23;8(10):e3275. doi: 10.1371/journal.pntd.0003275. eCollection 2014 Oct. PubMed PMID: 25340794; PubMed Central PMCID: PMC4207694.

11: Ghalhar MG, Akbarzadeh A, Rahmati M, Mellatyar H, Dariushnejad H, Zarghami N, Barkhordari A. Comparison of inhibitory effects of 17-AAG nanoparticles and free 17-AAG on HSP90 gene expression in breast cancer. Asian Pac J Cancer Prev. 2014;15(17):7113-8. PubMed PMID: 25227799.

12: Wang B, Chen L, Ni Z, Dai X, Qin L, Wu Y, Li X, Xu L, Lian J, He F. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (-)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells. Exp Cell Res. 2014 Nov 1;328(2):379-87. doi: 10.1016/j.yexcr.2014.08.039. Epub 2014 Sep 6. PubMed PMID: 25196280.

13: Pradhan R, Poudel BK, Choi JY, Choi IS, Shin BS, Choi HG, Yong CS, Kim JO. Erratum to: Preparation and evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) nanoparticles. Arch Pharm Res. 2015 May;38(5):930-1. doi: 10.1007/s12272-014-0463-9. PubMed PMID: 25098423.

14: Faingold D, Filho VB, Fernandes B, Jagan L, de Barros AM Jr, Orellana ME, Antecka E, Burnier MN Jr. Expression of focal adhesion kinase in uveal melanoma and the effects of Hsp90 inhibition by 17-AAG. Pathol Res Pract. 2014 Nov;210(11):739-45. doi: 10.1016/j.prp.2014.06.023. Epub 2014 Jul 1. PubMed PMID: 25041838.

15: Hadley KE, Hendricks DT. Use of NQO1 status as a selective biomarker for oesophageal squamous cell carcinomas with greater sensitivity to 17-AAG. BMC Cancer. 2014 May 15;14:334. doi: 10.1186/1471-2407-14-334. PubMed PMID: 24886060; PubMed Central PMCID: PMC4032580.

16: Wang S, Wang X, Du Z, Liu Y, Huang D, Zheng K, Liu K, Zhang Y, Zhong X, Wang Y. SNX-25a, a novel Hsp90 inhibitor, inhibited human cancer growth more potently than 17-AAG. Biochem Biophys Res Commun. 2014 Jul 18;450(1):73-80. doi: 10.1016/j.bbrc.2014.05.076. Epub 2014 May 28. PubMed PMID: 24879994.

17: Pradhan R, Poudel BK, Choi JY, Choi IS, Shin BS, Choi HG, Yong CS, Kim JO. Preparation and evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) nanoparticles. Arch Pharm Res. 2015 May;38(5):734-41. doi: 10.1007/s12272-014-0404-7. Epub 2014 May 15. PubMed PMID: 24824337.

18: Ortega L, Calvillo M, Luna F, Pérez-Severiano F, Rubio-Osornio M, Guevara J, Limón ID. 17-AAG improves cognitive process and increases heat shock protein response in a model lesion with Aβ25-35. Neuropeptides. 2014 Aug;48(4):221-32. doi: 10.1016/j.npep.2014.04.006. Epub 2014 Apr 29. PubMed PMID: 24819277.

19: Choi YE, Battelli C, Watson J, Liu J, Curtis J, Morse AN, Matulonis UA, Chowdhury D, Konstantinopoulos PA. Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells. Oncotarget. 2014 May 15;5(9):2678-87. PubMed PMID: 24798692; PubMed Central PMCID: PMC4058036.

20: Chen Y, Wang B, Liu D, Li JJ, Xue Y, Sakata K, Zhu LQ, Heldt SA, Xu H, Liao FF. Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment. J Neurosci. 2014 Feb 12;34(7):2464-70. doi: 10.1523/JNEUROSCI.0151-13.2014. PubMed PMID: 24523537; PubMed Central PMCID: PMC3921421.

Additional Information

Phase I study of Telatinib: Telatinib (450 mg b.i.d.) combined with bevacizumab (1 mg/kg bi-weekly) shows antitumor activity, but accumulating constitutional toxicity impedes long-term treatment of patients. Therefore, this combination will not be pursued in a phase II setting.   (source: Ann Oncol. 2011 Nov;22(11):2508-15).
Phase I study of Telatinib:
  (source: Ann Oncol. 2011 Nov;22(11):2508-15).
Phase I study of Telatinib (combo study):  Twenty-three patients were included in this phase I trial. Most frequently (>25%) reported adverse events of any grade were vomiting, nausea, fatigue, diarrhea, alopecia, and hand-foot syndrome. A silent myocardial infarction and two cases of decreased left ventricular ejection fraction were reported; both were reversible. Cardiac monitoring of the subsequent patients did not reveal other abnormalities. The study was terminated when the recommended single agent phase II doses of telatinib (900 mg twice daily) and capecitabine/irinotecan was reached. Pharmacokinetic profiles showed no clinically relevant changes upon coadministration of the three drugs. (Circulating) endothelial (progenitor) cell levels stabilized during treatment. Five of 23 patients had partial remission and 9 of 23 patients showed stable disease. CONCLUSIONS:  Continuous administration of 900 mg telatinib twice daily can be safely combined with irinotecan (180 mg/m(2)) and capecitabine (1,000 mg/m(2) twice daily, day 1-14) and is the recommended schedule for further phase II studies. Tumor shrinkage and disease stabilization was observed. Cardiac toxicity needs further investigation in following studies. (source: Clin Cancer Res. 2010 Apr 1;16(7):2187-97 .).
Phase I study of Telatinib (combo study):