NSC 1969
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 465298

CAS#: 879-37-8

Description: NSC 1969 is an endogenous metabolite of tryptophan and intermediate in the biosynthesis of the major plant, fungal, and bacterial auxin hormone, indole-3-acetic acid (IAA), in phytopathogenic bacteria. It is formed directly from tryptophan in plants by tryptophan monooxygenase or, indirectly, through indole-3-acetonitrile or indole-3-acetaldoxime intermediates. Exogenous application of NSC 1969 (20 µM) increases the expression of ami1, the gene encoding amidase 1, the enzyme that catalyzes the synthesis of indole-3-acetic acid from NSC 1969, in Arabidopsis. It reduces relative primary root elongation in Arabidopsis mutants that have increased amidase activity and lower indole-3-acetamide levels, but not in wild-type Arabidopsis, when used at concentrations of 1 and 10 µM. NSC 1969 inhibits mouse and rat liver, as well as P. fluorescens and tryptophan 2,3-dioxygenase but not rabbit intestine or mouse epididymis indoleamine 2,3-dioxygenase.


Chemical Structure

img
NSC 1969
CAS# 879-37-8

Theoretical Analysis

MedKoo Cat#: 465298
Name: NSC 1969
CAS#: 879-37-8
Chemical Formula: C10H10N2O
Exact Mass: 174.08
Molecular Weight: 174.203
Elemental Analysis: C, 68.95; H, 5.79; N, 16.08; O, 9.18

Price and Availability

Size Price Availability Quantity
10g USD 210 2 Weeks
25g USD 350 2 Weeks
50g USD 560 2 Weeks
100g USD 860 2 Weeks
Bulk inquiry

Synonym: NSC 1969; NSC1969; NSC-1969; Indole-3-acetamide; IAM;

IUPAC/Chemical Name: 2-(1H-indol-3-yl)acetamide

InChi Key: ZOAMBXDOGPRZLP-UHFFFAOYSA-N

InChi Code: InChI=1S/C10H10N2O/c11-10(13)5-7-6-12-9-4-2-1-3-8(7)9/h1-4,6,12H,5H2,(H2,11,13)

SMILES Code: O=C(N)CC1=CNC2=C1C=CC=C2

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMF 30.0 172.21
DMSO 30.0 172.21
DMSO:PBS (pH 7.2) (1:9) 0.1 0.57

Preparing Stock Solutions

The following data is based on the product molecular weight 174.20 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Bellés-Sancho P, Lardi M, Liu Y, Eberl L, Zamboni N, Bailly A, Pessi G. Metabolomics and Dual RNA-Sequencing on Root Nodules Revealed New Cellular Functions Controlled by Paraburkholderia phymatum NifA. Metabolites. 2021 Jul 15;11(7):455. doi: 10.3390/metabo11070455. PMID: 34357349; PMCID: PMC8305402.

2: Zhang F, Guo R, Cui W, Wang L, Xiao J, Shang J, Zhao Z. Untargeted serum metabolomics and tryptophan metabolism profiling in type 2 diabetic patients with diabetic glomerulopathy. Ren Fail. 2021 Dec;43(1):980-992. doi: 10.1080/0886022X.2021.1937219. PMID: 34157945; PMCID: PMC8231361.

3: Jahn L, Hofmann U, Ludwig-Müller J. Indole-3-Acetic Acid Is Synthesized by the Endophyte Cyanodermella asteris via a Tryptophan-Dependent and -Independent Way and Mediates the Interaction with a Non-Host Plant. Int J Mol Sci. 2021 Mar 6;22(5):2651. doi: 10.3390/ijms22052651. PMID: 33800748; PMCID: PMC7961953.

4: Ham S, Yoon H, Park JM, Park YG. Optimization of Fermentation Medium for Indole Acetic Acid Production by Pseudarthrobacter sp. NIBRBAC000502770. Appl Biochem Biotechnol. 2021 Aug;193(8):2567-2579. doi: 10.1007/s12010-021-03558-0. Epub 2021 Mar 30. PMID: 33783697.

5: Sánchez-Parra B, Pérez-Alonso MM, Ortiz-García P, Moya-Cuevas J, Hentrich M, Pollmann S. Accumulation of the Auxin Precursor Indole-3-Acetamide Curtails Growth through the Repression of Ribosome-Biogenesis and Development-Related Transcriptional Networks. Int J Mol Sci. 2021 Feb 18;22(4):2040. doi: 10.3390/ijms22042040. PMID: 33670805; PMCID: PMC7923163.

6: Noori F, Etesami H, Noori S, Forouzan E, Salehi Jouzani G, Malboobi MA. Whole genome sequence of Pantoea agglomerans ANP8, a salinity and drought stress-resistant bacterium isolated from alfalfa (Medicago sativa L.) root nodules. Biotechnol Rep (Amst). 2021 Feb 9;29:e00600. doi: 10.1016/j.btre.2021.e00600. PMID: 33643858; PMCID: PMC7893418.

7: Wu H, Yang J, Shen P, Li Q, Wu W, Jiang X, Qin L, Huang J, Cao X, Qi F. High- Level Production of Indole-3-acetic Acid in the Metabolically Engineered Escherichia coli. J Agric Food Chem. 2021 Feb 17;69(6):1916-1924. doi: 10.1021/acs.jafc.0c08141. Epub 2021 Feb 4. PMID: 33541074.

8: Torres D, Mongiardini E, Donadío F, Donoso R, Recabarren-Gajardo G, Gualpa J, Spaepen S, Defez R, Lopez G, Bianco C, Cassán F. Molecular and physiological analysis of indole-3-acetic acid degradation in Bradyrhizobium japonicum E109. Res Microbiol. 2021 Apr-May;172(3):103814. doi: 10.1016/j.resmic.2021.103814. Epub 2021 Feb 2. PMID: 33539931.

9: Abdulsalam O, Wagner K, Wirth S, Kunert M, David A, Kallenbach M, Boland W, Kothe E, Krause K. Phytohormones and volatile organic compounds, like geosmin, in the ectomycorrhiza of Tricholoma vaccinum and Norway spruce (Picea abies). Mycorrhiza. 2021 Mar;31(2):173-188. doi: 10.1007/s00572-020-01005-2. Epub 2020 Nov 18. PMID: 33210234; PMCID: PMC7910269.

10: Pérez-Alonso MM, Ortiz-García P, Moya-Cuevas J, Lehmann T, Sánchez-Parra B, Björk RG, Karim S, Amirjani MR, Aronsson H, Wilkinson MD, Pollmann S. Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. J Exp Bot. 2021 Feb 2;72(2):459-475. doi: 10.1093/jxb/eraa485. PMID: 33068437; PMCID: PMC7853601.

11: Illés P, Krasulová K, Vyhlídalová B, Poulíková K, Marcalíková A, Pečinková P, Sirotová N, Vrzal R, Mani S, Dvořák Z. Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor. Toxicol Lett. 2020 Nov 1;334:87-93. doi: 10.1016/j.toxlet.2020.09.015. Epub 2020 Sep 28. PMID: 33002526.

12: Pan L, Chen J, Ren S, Shen H, Rong B, Liu W, Yang Z. Complete genome sequence of Mycobacterium Mya-zh01, an endophytic bacterium, promotes plant growth and seed germination isolated from flower stalk of Doritaenopsis. Arch Microbiol. 2020 Sep;202(7):1965-1976. doi: 10.1007/s00203-020-01924-w. Epub 2020 May 30. PMID: 32474645.

13: Gao Y, Dai X, Aoi Y, Takebayashi Y, Yang L, Guo X, Zeng Q, Yu H, Kasahara H, Zhao Y. Two homologous INDOLE-3-ACETAMIDE (IAM) HYDROLASE genes are required for the auxin effects of IAM in Arabidopsis. J Genet Genomics. 2020 Mar 20;47(3):157-165. doi: 10.1016/j.jgg.2020.02.009. Epub 2020 Mar 19. PMID: 32327358; PMCID: PMC7231657.

14: Liu WH, Chen FF, Wang CE, Fu HH, Fang XQ, Ye JR, Shi JY. Indole-3-Acetic Acid in Burkholderia pyrrocinia JK-SH007: Enzymatic Identification of the Indole-3-Acetamide Synthesis Pathway. Front Microbiol. 2019 Nov 5;10:2559. doi: 10.3389/fmicb.2019.02559. PMID: 31749788; PMCID: PMC6848275.

15: Chung JY, Brown S, Chen H, Liu J, Papadopoulos V, Zirkin B. Effects of pharmacologically induced Leydig cell testosterone production on intratesticular testosterone and spermatogenesis†. Biol Reprod. 2020 Feb 14;102(2):489-498. doi: 10.1093/biolre/ioz174. PMID: 31504200; PMCID: PMC7443349.

16: Liu X, Zhao K, Yang X, Zhao Y. Gut Microbiota and Metabolome Response of Decaisnea insignis Seed Oil on Metabolism Disorder Induced by Excess Alcohol Consumption. J Agric Food Chem. 2019 Sep 25;67(38):10667-10677. doi: 10.1021/acs.jafc.9b04792. Epub 2019 Sep 16. PMID: 31483636.

17: Zhao YX, Guo LL, Sun SL, Guo JJ, Dai YJ. Bioconversion of indole-3-acetonitrile by the N2-fixing bacterium Ensifer meliloti CGMCC 7333 and its Escherichia coli-expressed nitrile hydratase. Int Microbiol. 2020 May;23(2):225-232. doi: 10.1007/s10123-019-00094-0. Epub 2019 Aug 13. PMID: 31410668.

18: Zhang P, Jin T, Kumar Sahu S, Xu J, Shi Q, Liu H, Wang Y. The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. Molecules. 2019 Apr 10;24(7):1411. doi: 10.3390/molecules24071411. PMID: 30974826; PMCID: PMC6479905.

19: Gul Jan F, Hamayun M, Hussain A, Jan G, Iqbal A, Khan A, Lee IJ. An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol. 2019 Jan 7;19(1):3. doi: 10.1186/s12866-018-1374-6. PMID: 30616522; PMCID: PMC6323777.

20: Tullio LD, Nakatani AS, Gomes DF, Ollero FJ, Megías M, Hungria M. Revealing the roles of y4wF and tidC genes in Rhizobium tropici CIAT 899: biosynthesis of indolic compounds and impact on symbiotic properties. Arch Microbiol. 2019 Mar;201(2):171-183. doi: 10.1007/s00203-018-1607-y. Epub 2018 Dec 8. PMID: 30535938.