YHN90076
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 465287

CAS#: 16290-07-6

Description: YHN90076 is a flavonol glycoside that has been found in C. tricuspidata and A. pilosa and has diverse biological activities. It scavenges DPPH radicals (IC50 = 51.09 μM) and inhibits acetylcholinesterase (AChE) activity (IC50 = 63.94 μM) in cell-free assays. YHN90076 inhibits LPS-induced IL-1β, IL-6, and TNF-α production in mouse RAW 264.7 macrophages in a concentration-dependent manner. It also inhibits the proliferation of human HeLa cervical, K562 leukemia, and A431 epidermoid carcinoma cells (EC50s = 3.9, 3.9, and 14.8 μg/ml, respectively). This product has no formal name. For the convenience of scientific communication, we named it by combining its InChi Key (3 letters from the first letter of each section) with the last 5 digit of its CAS#) according to MedKoo Chemical Nomenclature (https://www.medkoo.com/page/naming).


Chemical Structure

img
YHN90076
CAS# 16290-07-6

Theoretical Analysis

MedKoo Cat#: 465287
Name: YHN90076
CAS#: 16290-07-6
Chemical Formula: C21H20O11
Exact Mass: 448.1006
Molecular Weight: 448.38
Elemental Analysis: C, 56.25; H, 4.50; O, 39.25

Price and Availability

Size Price Availability Quantity
1.0mg USD 370.0 2 Weeks
5.0mg USD 1090.0 2 Weeks
Bulk inquiry

Synonym: YHN90076; YHN 90076; YHN-90076; Kaempferol 7-O-glucoside;

IUPAC/Chemical Name: 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

InChi Key: YPWHZCPMOQGCDQ-HMGRVEAOSA-N

InChi Code: InChI=1S/C21H20O11/c22-7-13-15(25)17(27)19(29)21(32-13)30-10-5-11(24)14-12(6-10)31-20(18(28)16(14)26)8-1-3-9(23)4-2-8/h1-6,13,15,17,19,21-25,27-29H,7H2/t13-,15-,17+,19-,21-/m1/s1

SMILES Code: O=C1C2=C(C=C(C=C2OC(C3=CC=C(O)C=C3)=C1O)O[C@@H]4O[C@H](CO)[C@@H](O)[C@H](O)[C@H]4O)O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight 448.38 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Dos Santos Nascimento LB, Gori A, Raffaelli A, Ferrini F, Brunetti C. Phenolic Compounds from Leaves and Flowers of Hibiscus roseus: Potential Skin Cosmetic Applications of an Under-Investigated Species. Plants (Basel). 2021 Mar 10;10(3):522. doi: 10.3390/plants10030522. PMID: 33802222; PMCID: PMC8000889.

2: Lin N, Liu X, Zhu W, Cheng X, Wang X, Wan X, Liu L. Ambient Ultraviolet B Signal Modulates Tea Flavor Characteristics via Shifting a Metabolic Flux in Flavonoid Biosynthesis. J Agric Food Chem. 2021 Mar 24;69(11):3401-3414. doi: 10.1021/acs.jafc.0c07009. Epub 2021 Mar 15. PMID: 33719437.

3: Pandey BP, Pradhan SP, Adhikari K, Nepal S. Bergenia pacumbis from Nepal, an astonishing enzymes inhibitor. BMC Complement Med Ther. 2020 Jun 26;20(1):198. doi: 10.1186/s12906-020-02989-2. PMID: 32586304; PMCID: PMC7318538.

4: Li C, Jiang C, Jing H, Jiang C, Wang H, Du X, Lou Z. Separation of phenolics from peony flowers and their inhibitory activities and action mechanism on bacterial biofilm. Appl Microbiol Biotechnol. 2020 May;104(10):4321-4332. doi: 10.1007/s00253-020-10540-z. Epub 2020 Mar 30. PMID: 32232531.

5: Zhumashova G, Kukula-Koch W, Koch W, Baj T, Sayakova G, Shukirbekova A, Głowniak K, Sakipova Z. Phytochemical and Antioxidant Studies on a Rare Rheum cordatum Losinsk. Species from Kazakhstan. Oxid Med Cell Longev. 2019 Nov 16;2019:5465463. doi: 10.1155/2019/5465463. Erratum in: Oxid Med Cell Longev. 2020 May 30;2020:9692807. PMID: 31827680; PMCID: PMC6885188.

6: Hussain F, Jahan N, Rahman KU, Sultana B, Jamil S. Identification of Hypotensive Biofunctional Compounds of Coriandrum sativum and Evaluation of Their Angiotensin-Converting Enzyme (ACE) Inhibition Potential. Oxid Med Cell Longev. 2018 Nov 15;2018:4643736. doi: 10.1155/2018/4643736. PMID: 30581531; PMCID: PMC6276458.

7: Kyriacou MC, El-Nakhel C, Graziani G, Pannico A, Soteriou GA, Giordano M, Ritieni A, De Pascale S, Rouphael Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019 Mar 30;277:107-118. doi: 10.1016/j.foodchem.2018.10.098. Epub 2018 Oct 22. PMID: 30502125.

8: Nishina A, Sato D, Yamamoto J, Kobayashi-Hattori K, Hirai Y, Kimura H. Antidiabetic-Like Effects of Naringenin-7-O-glucoside from Edible Chrysanthemum 'Kotobuki' and Naringenin by Activation of the PI3K/Akt Pathway and PPARγ. Chem Biodivers. 2019 Jan;16(1):e1800434. doi: 10.1002/cbdv.201800434. Epub 2018 Dec 10. PMID: 30462381.

9: Sut S, Dall'Acqua S, Poloniato G, Maggi F, Malagoli M. Preliminary evaluation of quince (Cydonia oblonga Mill.) fruit as extraction source of antioxidant phytoconstituents for nutraceutical and functional food applications. J Sci Food Agric. 2019 Feb;99(3):1046-1054. doi: 10.1002/jsfa.9271. Epub 2018 Oct 4. PMID: 30014572.

10: Wang J, Fang X, Ge L, Cao F, Zhao L, Wang Z, Xiao W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One. 2018 May 17;13(5):e0197563. doi: 10.1371/journal.pone.0197563. PMID: 29771951; PMCID: PMC5957424.

11: Wan H, Yu C, Han Y, Guo X, Ahmad S, Tang A, Wang J, Cheng T, Pan H, Zhang Q. Flavonols and Carotenoids in Yellow Petals of Rose Cultivar ( Rosa 'Sun City'): A Possible Rich Source of Bioactive Compounds. J Agric Food Chem. 2018 Apr 25;66(16):4171-4181. doi: 10.1021/acs.jafc.8b01509. Epub 2018 Apr 11. PMID: 29618209.

12: Liu X, Lin C, Ma X, Tan Y, Wang J, Zeng M. Functional Characterization of a Flavonoid Glycosyltransferase in Sweet Orange (Citrus sinensis). Front Plant Sci. 2018 Feb 15;9:166. doi: 10.3389/fpls.2018.00166. PMID: 29497429; PMCID: PMC5818429.

13: Zhu M, Liu T, Zhang C, Guo M. Flavonoids of Lotus (Nelumbo nucifera) Seed Embryos and Their Antioxidant Potential. J Food Sci. 2017 Aug;82(8):1834-1841. doi: 10.1111/1750-3841.13784. Epub 2017 Jun 20. PMID: 28631810.

14: Popova AV, Hincha DK. Effects of flavonol glycosides on liposome stability during freezing and drying. Biochim Biophys Acta. 2016 Dec;1858(12):3050-3060. doi: 10.1016/j.bbamem.2016.09.020. Epub 2016 Sep 24. PMID: 27677212.

15: Behbahani M, Sayedipour S, Pourazar A, Shanehsazzadeh M. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca. Res Pharm Sci. 2014 Nov-Dec;9(6):463-9. PMID: 26339261; PMCID: PMC4326984.

16: Tofighi Z, Molazem M, Doostdar B, Taban P, Shahverdi AR, Samadi N, Yassa N. Antimicrobial Activities of Three Medicinal Plants and Investigation of Flavonoids of Tripleurospermum disciforme. Iran J Pharm Res. 2015 Winter;14(1):225-31. PMID: 25561928; PMCID: PMC4277635.

17: Louaar S, Achouri A, Lefahal M, Laouer H, Medjroubi K, Duddeck H, Akkal S. Flavonoids from Algerian endemic Centaurea microcarpa and their chemotaxonomical significance. Nat Prod Commun. 2011 Nov;6(11):1603-4. PMID: 22224272.

18: Kami D, Kasuga J, Arakawa K, Fujikawa S. Improved cryopreservation by diluted vitrification solution with supercooling-facilitating flavonol glycoside. Cryobiology. 2008 Dec;57(3):242-5. doi: 10.1016/j.cryobiol.2008.09.003. Epub 2008 Sep 15. PMID: 18824164.

19: Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Huang YP, Liu YW, Liu JW. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J Ethnopharmacol. 2007 Aug 15;113(1):115-24. doi: 10.1016/j.jep.2007.05.016. Epub 2007 May 18. PMID: 17606345.

20: Rojas S, Macías M, Castañeda P, Bye R, Linares E, Mata R. A new lanostane- type triterpenoid from Chamaesyce prostrata. Planta Med. 1999 Jun;65(5):478-9. doi: 10.1055/s-2006-960820. PMID: 17260274.