YSK05
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 465262

CAS#: 1318793-78-0

Description: YSK05 is an ionizable amino lipid (apparent pKa = ~6.5) that has been used in combination with other lipids in the formation of liposomes and lipid nanoparticles (LNPs). Administration of cyclic di-GMP (Item No. 17144) in YSK05-containing liposomes increases serum levels of IFN-β, IFN-γ, IL-6, and TNF-α and activates natural killer (NK) cells in mice, as well as decreases lung metastasis in a B16/F10 murine melanoma model of metastasis. Intravenous administration of factor VII siRNA in YSK05-containing LNPs reduces factor VII activity in isolated mouse plasma.


Chemical Structure

img
YSK05
CAS# 1318793-78-0

Theoretical Analysis

MedKoo Cat#: 465262
Name: YSK05
CAS#: 1318793-78-0
Chemical Formula: C42H77NO2
Exact Mass: 627.60
Molecular Weight: 628.083
Elemental Analysis: C, 80.32; H, 12.36; N, 2.23; O, 5.09

Price and Availability

Size Price Availability Quantity
5mg USD 295 2 Weeks
10mg USD 550 2 Weeks
25mg USD 950 2 Weeks
Bulk inquiry

Synonym: YSK05; YSK 05; YSK-05;

IUPAC/Chemical Name: 1-methyl-4,4-bis(((9Z,12Z)-octadeca-9,12-dien-1-yl)oxy)piperidine

InChi Key: KURBRAZBXURPCJ-QYCRHRGJSA-N

InChi Code: InChI=1S/C42H77NO2/c1-4-6-8-10-12-14-16-18-20-22-24-26-28-30-32-34-40-44-42(36-38-43(3)39-37-42)45-41-35-33-31-29-27-25-23-21-19-17-15-13-11-9-7-5-2/h12-15,18-21H,4-11,16-17,22-41H2,1-3H3/b14-12-,15-13-,20-18-,21-19-

SMILES Code: CCCCC/C=C\C/C=C\CCCCCCCCOC1(OCCCCCCCC/C=C\C/C=C\CCCCC)CCN(C)CC1

Appearance: A solution in ethanol

Purity: >90% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
Ethanol 25.0 39.80

Preparing Stock Solutions

The following data is based on the product molecular weight 628.08 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Hagino Y, Khalil IA, Kimura S, Kusumoto K, Harashima H. GALA-Modified Lipid Nanoparticles for the Targeted Delivery of Plasmid DNA to the Lungs. Mol Pharm. 2021 Mar 1;18(3):878-888. doi: 10.1021/acs.molpharmaceut.0c00854. Epub 2021 Jan 25. PMID: 33492961.

2: Sakurai Y. [Development of siRNA Delivery Targeting the Tumor Microenvironment with a New Functional Device]. Yakugaku Zasshi. 2019;139(11):1357-1363. Japanese. doi: 10.1248/yakushi.19-00150. PMID: 31685731.

3: Kimura S, Khalil IA, Elewa YHA, Harashima H. Spleen selective enhancement of transfection activities of plasmid DNA driven by octaarginine and an ionizable lipid and its implications for cancer immunization. J Control Release. 2019 Nov 10;313:70-79. doi: 10.1016/j.jconrel.2019.09.009. Epub 2019 Sep 14. PMID: 31526828.

4: Younis MA, Khalil IA, Abd Elwakil MM, Harashima H. A Multifunctional Lipid- Based Nanodevice for the Highly Specific Codelivery of Sorafenib and Midkine siRNA to Hepatic Cancer Cells. Mol Pharm. 2019 Sep 3;16(9):4031-4044. doi: 10.1021/acs.molpharmaceut.9b00738. Epub 2019 Aug 23. PMID: 31403802.

5: Shobaki N, Sato Y, Harashima H. Mixing lipids to manipulate the ionization status of lipid nanoparticles for specific tissue targeting. Int J Nanomedicine. 2018 Dec 10;13:8395-8410. doi: 10.2147/IJN.S188016. PMID: 30587967; PMCID: PMC6294068.

6: Sato Y, Matsui H, Sato R, Harashima H. Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA. J Control Release. 2018 Aug 28;284:179-187. doi: 10.1016/j.jconrel.2018.06.017. Epub 2018 Jun 21. PMID: 29936118.

7: Khalil IA, Kimura S, Sato Y, Harashima H. Synergism between a cell penetrating peptide and a pH-sensitive cationic lipid in efficient gene delivery based on double-coated nanoparticles. J Control Release. 2018 Apr 10;275:107-116. doi: 10.1016/j.jconrel.2018.02.016. Epub 2018 Feb 13. PMID: 29452131.

8: Yamamoto S, Kato A, Sakurai Y, Hada T, Harashima H. Modality of tumor endothelial VEGFR2 silencing-mediated improvement in intratumoral distribution of lipid nanoparticles. J Control Release. 2017 Apr 10;251:1-10. doi: 10.1016/j.jconrel.2017.02.010. Epub 2017 Feb 10. PMID: 28192155.

9: Sato Y, Harashima H, Kohara M. A Multifunctional Envelope-Type Nano Device Containing a pH-Sensitive Cationic Lipid for Efficient Delivery of Short Interfering RNA to Hepatocytes In Vivo. Methods Mol Biol. 2016;1364:71-8. doi: 10.1007/978-1-4939-3112-5_7. PMID: 26472443.

10: Matsui H, Sato Y, Hatakeyama H, Akita H, Harashima H. Size-dependent specific targeting and efficient gene silencing in peritoneal macrophages using a pH-sensitive cationic liposomal siRNA carrier. Int J Pharm. 2015 Nov 10;495(1):171-178. doi: 10.1016/j.ijpharm.2015.08.044. Epub 2015 Sep 7. PMID: 26355712.

11: Nakamura T, Miyabe H, Hyodo M, Sato Y, Hayakawa Y, Harashima H. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J Control Release. 2015 Oct 28;216:149-57. doi: 10.1016/j.jconrel.2015.08.026. Epub 2015 Aug 14. PMID: 26282097.

12: Sakurai Y, Matsuda T, Hada T, Harashima H. Efficient Packaging of Plasmid DNA Using a pH Sensitive Cationic Lipid for Delivery to Hepatocytes. Biol Pharm Bull. 2015;38(8):1185-91. doi: 10.1248/bpb.b15-00138. PMID: 26235581.

13: Sakurai Y, Hatakeyama H, Akita H, Harashima H. Improvement of doxorubicin efficacy using liposomal anti-polo-like kinase 1 siRNA in human renal cell carcinomas. Mol Pharm. 2014 Aug 4;11(8):2713-9. doi: 10.1021/mp500245z. Epub 2014 May 12. PMID: 24800640.

14: Hyodo M, Sakurai Y, Akita H, Harashima H. "Programmed packaging" for gene delivery. J Control Release. 2014 Nov 10;193:316-23. doi: 10.1016/j.jconrel.2014.04.023. Epub 2014 Apr 26. PMID: 24780263.

15: Miyabe H, Hyodo M, Nakamura T, Sato Y, Hayakawa Y, Harashima H. A new adjuvant delivery system 'cyclic di-GMP/YSK05 liposome' for cancer immunotherapy. J Control Release. 2014 Jun 28;184:20-7. doi: 10.1016/j.jconrel.2014.04.004. Epub 2014 Apr 13. PMID: 24727060.

16: Tamaru M, Akita H, Kajimoto K, Sato Y, Hatakeyama H, Harashima H. An apolipoprotein E modified liposomal nanoparticle: ligand dependent efficiency as a siRNA delivery carrier for mouse-derived brain endothelial cells. Int J Pharm. 2014 Apr 25;465(1-2):77-82. doi: 10.1016/j.ijpharm.2014.02.016. Epub 2014 Feb 12. PMID: 24530390.

17: Hatakeyama H, Murata M, Sato Y, Takahashi M, Minakawa N, Matsuda A, Harashima H. The systemic administration of an anti-miRNA oligonucleotide encapsulated pH-sensitive liposome results in reduced level of hepatic microRNA-122 in mice. J Control Release. 2014 Jan 10;173:43-50. PMID: 24511611.

18: Sakurai Y, Hatakeyama H, Sato Y, Hyodo M, Akita H, Ohga N, Hida K, Harashima H. RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system. J Control Release. 2014 Jan 10;173:110-8. doi: 10.1016/j.jconrel.2013.10.003. Epub 2013 Oct 11. PMID: 24120854.

19: Takahashi M, Yamada N, Hatakeyama H, Murata M, Sato Y, Minakawa N, Harashima H, Matsuda A. In vitro optimization of 2'-OMe-4'-thioribonucleoside-modified anti-microRNA oligonucleotides and its targeting delivery to mouse liver using a liposomal nanoparticle. Nucleic Acids Res. 2013 Dec;41(22):10659-67. doi: 10.1093/nar/gkt823. Epub 2013 Sep 11. PMID: 24030710; PMCID: PMC3905841.

20: Sakurai Y, Hatakeyama H, Sato Y, Hyodo M, Akita H, Harashima H. Gene silencing via RNAi and siRNA quantification in tumor tissue using MEND, a liposomal siRNA delivery system. Mol Ther. 2013 Jun;21(6):1195-203. doi: 10.1038/mt.2013.57. Epub 2013 Apr 9. PMID: 23568259; PMCID: PMC3677313.