TαMCA-d4 sodium salt
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 464801

CAS#: unknown

Description: Tauro-α-muricholic acid-d4 (TαMCA-d4) is intended for use as an internal standard for the quantification of TαMCA by GC- or LC-MS. TαMCA is an antagonist of the farnesoid X receptor (FXR; IC50 = 28 µM) and a taurine-conjugated form of the murine-specific primary bile acid α-muricholic acid. TαMCA is common in rodents but has also been found in small amounts in human serum.


Chemical Structure

img
TαMCA-d4 sodium salt
CAS# unknown

Theoretical Analysis

MedKoo Cat#: 464801
Name: TαMCA-d4 sodium salt
CAS#: unknown
Chemical Formula: C26H40D4NNaO7S
Exact Mass: 541.2987
Molecular Weight: 541.7122
Elemental Analysis: C, 57.65; H, 8.93; N, 2.59; Na, 4.24; O, 20.67; S, 5.92

Price and Availability

Size Price Availability Quantity
1.0mg USD 700.0 2 Weeks
Bulk inquiry

Synonym: TαMCA-d4; TαMCA d4; Tauro-α-muricholate-d4; Tauro-α-muricholic Acid-d4 (sodium salt);

IUPAC/Chemical Name: sodium 2-((R)-4-((3R,5R,6S,7S,8S,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl-2,2,4,4-d4)pentanamido)ethane-1-sulfonate

InChi Key: NYXROOLWUZIWRB-YHXAEYHASA-M

InChi Code: InChI=1S/C26H45NO7S.Na/c1-15(4-7-21(29)27-12-13-35(32,33)34)17-5-6-18-22-19(9-11-25(17,18)2)26(3)10-8-16(28)14-20(26)23(30)24(22)31;/h15-20,22-24,28,30-31H,4-14H2,1-3H3,(H,27,29)(H,32,33,34);/q;+1/p-1/t15-,16-,17-,18+,19+,20+,22+,23+,24+,25-,26-;/m1./s1/i8D2,14D2;

SMILES Code: C[C@@H]([C@]1(CC[C@]2([C@@]3([C@@H]([C@H]([C@@]4(C([2H])([C@@H](C([2H])(C[C@@]4([C@]3(CC[C@@]21C)[H])C)[2H])O)[2H])[H])O)O)[H])[H])[H])CCC(NCCS([O-])(=O)=O)=O.[Na+]

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMF 10.0 18.46
DMSO 10.0 18.46
DMSO:PBS (pH 7.2) (1:4) 0.2 0.37
Ethanol 1.0 1.0

Preparing Stock Solutions

The following data is based on the product molecular weight 541.7122 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Zhao H, Wu H, Duan M, Liu R, Zhu Q, Zhang K, Wang L. Cinnamaldehyde Improves Metabolic Functions in Streptozotocin-Induced Diabetic Mice by Regulating Gut Microbiota. Drug Des Devel Ther. 2021 Jun 1;15:2339-2355. doi: 10.2147/DDDT.S288011. PMID: 34103897; PMCID: PMC8179756.

2: Jiang P, Yuan GH, Jiang BR, Zhang JY, Wang YQ, Lv HJ, Zhang Z, Wu JL, Wu Q, Li L. Effects of microplastics (MPs) and tributyltin (TBT) alone and in combination on bile acids and gut microbiota crosstalk in mice. Ecotoxicol Environ Saf. 2021 Sep 1;220:112345. doi: 10.1016/j.ecoenv.2021.112345. Epub 2021 May 18. PMID: 34020283.

3: Li Y, Xue H, Fang S, Wang G, Wang Y, Wang T, Shi R, Wu J, Ma Y. Time-series metabolomics insights into the progressive characteristics of 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced cholestatic liver fibrosis in mice. J Pharm Biomed Anal. 2021 May 10;198:113986. doi: 10.1016/j.jpba.2021.113986. Epub 2021 Feb 19. PMID: 33690095.

4: Wang WW, Wang J, Zhang HJ, Wu SG, Qi GH. Supplemental Clostridium butyricum Modulates Lipid Metabolism Through Shaping Gut Microbiota and Bile Acid Profile of Aged Laying Hens. Front Microbiol. 2020 Apr 15;11:600. doi: 10.3389/fmicb.2020.00600. PMID: 32351471; PMCID: PMC7176355.

5: Hui S, Liu Y, Chen M, Wang X, Lang H, Zhou M, Yi L, Mi M. Capsaicin Improves Glucose Tolerance and Insulin Sensitivity Through Modulation of the Gut Microbiota-Bile Acid-FXR Axis in Type 2 Diabetic db/db Mice. Mol Nutr Food Res. 2019 Dec;63(23):e1900608. doi: 10.1002/mnfr.201900608. Epub 2019 Sep 25. PMID: 31539192.

6: Sanoh S, Tamura Y, Fujino C, Sugahara G, Yoshizane Y, Yanagi A, Kisoh K, Ishida Y, Tateno C, Ohta S, Kotake Y. Changes in Bile Acid Concentrations after Administration of Ketoconazole or Rifampicin to Chimeric Mice with Humanized Liver. Biol Pharm Bull. 2019;42(8):1366-1375. doi: 10.1248/bpb.b19-00249. PMID: 31366871.

7: Li R, Zeng L, Xie S, Chen J, Yu Y, Zhong L. Targeted metabolomics study of serum bile acid profile in patients with end-stage renal disease undergoing hemodialysis. PeerJ. 2019 Jun 17;7:e7145. doi: 10.7717/peerj.7145. PMID: 31245185; PMCID: PMC6585905.

8: Sun L, Xu H, Ye J, Gaikwad NW. Comparative effect of black, green, oolong, and white tea intake on weight gain and bile acid metabolism. Nutrition. 2019 Sep;65:208-215. doi: 10.1016/j.nut.2019.02.006. Epub 2019 Mar 1. PMID: 31031064.

9: Lee DG, Hori S, Kohmoto O, Kitta S, Yoshida R, Tanaka Y, Shimizu H, Takahashi K, Nagura T, Uchino H, Fukiya S, Yokota A, Ishizuka S. Ingestion of difructose anhydride III partially suppresses the deconjugation and 7α-dehydroxylation of bile acids in rats fed with a cholic acid-supplemented diet. Biosci Biotechnol Biochem. 2019 Jul;83(7):1329-1335. doi: 10.1080/09168451.2019.1597617. Epub 2019 Mar 26. PMID: 30912732.

10: Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabyab F, Zhu Q, Zhang T, Leblanc M, Liu S, He M, Waizenegger W, Gasser E, Schnabl B, Atkins AR, Yu RT, Knight R, Liddle C, Downes M, Evans RM. FXR Regulates Intestinal Cancer Stem Cell Proliferation. Cell. 2019 Feb 21;176(5):1098-1112.e18. doi: 10.1016/j.cell.2019.01.036. PMID: 30794774; PMCID: PMC6701863.

11: Ding L, Chang M, Guo Y, Zhang L, Xue C, Yanagita T, Zhang T, Wang Y. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018 Dec 19;17(1):286. doi: 10.1186/s12944-018-0939-6. PMID: 30567573; PMCID: PMC6300890.

12: Khambu B, Li T, Yan S, Yu C, Chen X, Goheen M, Li Y, Lin J, Cummings OW, Lee YA, Friedman S, Dong Z, Feng GS, Wu S, Yin XM. Hepatic Autophagy Deficiency Compromises Farnesoid X Receptor Functionality and Causes Cholestatic Injury. Hepatology. 2019 May;69(5):2196-2213. doi: 10.1002/hep.30407. Epub 2019 Mar 8. PMID: 30520052; PMCID: PMC6461497.

13: Xiao Y, Zhou K, Lu Y, Yan W, Cai W, Wang Y. Administration of antibiotics contributes to cholestasis in pediatric patients with intestinal failure via the alteration of FXR signaling. Exp Mol Med. 2018 Nov 30;50(12):1-14. doi: 10.1038/s12276-018-0181-3. PMID: 30504803; PMCID: PMC6269533.

14: Yao L, Seaton SC, Ndousse-Fetter S, Adhikari AA, DiBenedetto N, Mina AI, Banks AS, Bry L, Devlin AS. A selective gut bacterial bile salt hydrolase alters host metabolism. Elife. 2018 Jul 17;7:e37182. doi: 10.7554/eLife.37182. PMID: 30014852; PMCID: PMC6078496.

15: Zöhrer E, Meinel K, Fauler G, Moser VA, Greimel T, Zobl J, Schlagenhauf A, Jahnel J. Neonatal sepsis leads to early rise of rare serum bile acid tauro- omega-muricholic acid (TOMCA). Pediatr Res. 2018 Jul;84(1):66-70. doi: 10.1038/s41390-018-0007-y. Epub 2018 May 23. PMID: 29795204.

16: Gallo-Ebert C, Francisco J, Liu HY, Draper R, Modi K, Hayward MD, Jones BK, Buiakova O, McDonough V, Nickels JT Jr. Mice lacking ARV1 have reduced signs of metabolic syndrome and non-alcoholic fatty liver disease. J Biol Chem. 2018 Apr 20;293(16):5956-5974. doi: 10.1074/jbc.RA117.000800. Epub 2018 Feb 28. PMID: 29491146; PMCID: PMC5912475.

17: Lu Z, Lu Y, Wang X, Wang F, Zhang Y. Activation of intestinal GR-FXR and PPARα-UGT signaling exacerbates ibuprofen-induced enteropathy in mice. Arch Toxicol. 2018 Mar;92(3):1249-1265. doi: 10.1007/s00204-017-2139-y. Epub 2017 Dec 8. PMID: 29222744.

18: Cepa S, Potter D, Wong L, Schutt L, Tarrant J, Pang J, Zhang X, Andaya R, Salphati L, Ran Y, An L, Morgan R, Maher J. Individual serum bile acid profiling in rats aids in human risk assessment of drug-induced liver injury due to BSEP inhibition. Toxicol Appl Pharmacol. 2018 Jan 1;338:204-213. doi: 10.1016/j.taap.2017.11.007. Epub 2017 Nov 13. PMID: 29146462.

19: DiMarzio M, Rusconi B, Yennawar NH, Eppinger M, Patterson AD, Dudley EG. Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA. PLoS One. 2017 Sep 14;12(9):e0183564. doi: 10.1371/journal.pone.0183564. PMID: 28910295; PMCID: PMC5598929.

20: Tian J, Zhu J, Yi Y, Li C, Zhang Y, Zhao Y, Pan C, Xiang S, Li X, Li G, Newman JW, Feng X, Liu J, Han J, Wang L, Gao Y, La Frano MR, Liang A. Dose- related liver injury of Geniposide associated with the alteration in bile acid synthesis and transportation. Sci Rep. 2017 Aug 21;7(1):8938. doi: 10.1038/s41598-017-09131-2. PMID: 28827769; PMCID: PMC5566417.