NADPH tetrasodium

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 111528

CAS#: 2646-71-1 (sodium)

Description: NADPH, tetrasodium salt is the sodium salt form of NADPH, which the reduced form of NADP+. NADPH is used in anabolic reactions (such as lipid and nucleic acid synthesis) as a reducing agent and cofactor.

Chemical Structure

NADPH tetrasodium
CAS# 2646-71-1 (sodium)

Theoretical Analysis

MedKoo Cat#: 111528
Name: NADPH tetrasodium
CAS#: 2646-71-1 (sodium)
Chemical Formula: C21H26N7Na4O17P3
Exact Mass: 0.00
Molecular Weight: 833.350
Elemental Analysis: C, 30.27; H, 3.14; N, 11.77; Na, 11.03; O, 32.64; P, 11.15

Price and Availability

Size Price Availability Quantity
100mg USD 350 2 Weeks
200mg USD 550 2 Weeks
500mg USD 950 2 Weeks
1g USD 1650 2 Weeks
2g USD 2950 2 Weeks
5g USD 5250 2 Weeks
Bulk inquiry

Related CAS #: 53-57-6 (free acid)   604-79-5 (oxidized)   2646-71-1 (sodium)   100929-71-3 (ammonium)   100929-71-3 (Cy4N)    

Synonym: Dihydronicotinamide-adenine dinucleotide phosphate, tetrasodium salt; NADPH sodium salt

IUPAC/Chemical Name: sodium (2R,3R,4R,5R)-2-(6-amino-9H-purin-9-yl)-5-((((((((2R,3S,4R,5R)-5-(3-carbamoylpyridin-1(4H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)oxidophosphoryl)oxy)oxidophosphoryl)oxy)methyl)-4-hydroxytetrahydrofuran-3-yl phosphate


InChi Code: InChI=1S/C21H30N7O17P3.4Na/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(44-46(33,34)35)14(30)11(43-21)6-41-48(38,39)45-47(36,37)40-5-10-13(29)15(31)20(42-10)27-3-1-2-9(4-27)18(23)32;;;;/h1,3-4,7-8,10-11,13-16,20-21,29-31H,2,5-6H2,(H2,23,32)(H,36,37)(H,38,39)(H2,22,24,25)(H2,33,34,35);;;;/q;4*+1/p-4/t10-,11-,13-,14-,15-,16-,20-,21-;;;;/m1..../s1

SMILES Code: O=P([O-])([O-])O[C@H]1[C@H](N2C=NC3=C(N)N=CN=C23)O[C@H](COP([O-])(OP([O-])(OC[C@H]4O[C@@H](N5C=CCC(C(N)=O)=C5)[C@H](O)[C@@H]4O)=O)=O)[C@H]1O.[Na+].[Na+].[Na+].[Na+]

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 833.35 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.


Dilution Calculator

Calculate the dilution required to prepare a stock solution.

1: Ye Y, Guo X, He X, Zhang M, He H, Qiu D, Guo Z. High-resolution mass spectrometry-based approach for the identification and profiling of the metabolites of taletrectinib formed in liver microsomes. Drug Test Anal. 2021 Feb 1. doi: 10.1002/dta.3008. Epub ahead of print. PMID: 33527739.

2: Su J, Jia F, Lu J, Chen W, Sun H, Liu T, Wu X. Characterization of the metabolites of rosmarinic acid in human liver microsomes using liquid chromatography combined with electrospray ionization tandem mass spectrometry. Biomed Chromatogr. 2020 Apr;34(4):e4806. doi: 10.1002/bmc.4806. Epub 2020 Feb 13. PMID: 32012312.

3: Liu J, Wang Y, Liu X, Yuan Q, Zhang Y, Li Y. Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis. Talanta. 2019 Jul 1;199:573-580. doi: 10.1016/j.talanta.2019.03.018. Epub 2019 Mar 2. PMID: 30952300.

4: Wang R, Zhu Y, Deng L, Zhang H, Wang Q, Yin M, Song P, Elzaki MEA, Han Z, Wu M. Imidacloprid is hydroxylated by Laodelphax striatellus CYP6AY3v2. Insect Mol Biol. 2017 Oct;26(5):543-551. doi: 10.1111/imb.12317. Epub 2017 Jun 27. PMID: 28654199.

5: Ludwig FA, Smits R, Fischer S, Donat CK, Hoepping A, Brust P, Steinbach J. LC-MS Supported Studies on the in Vitro Metabolism of both Enantiomers of Flubatine and the in Vivo Metabolism of (+)-[(18)F]Flubatine-A Positron Emission Tomography Radioligand for Imaging α4β2 Nicotinic Acetylcholine Receptors. Molecules. 2016 Sep 8;21(9):1200. doi: 10.3390/molecules21091200. PMID: 27617996; PMCID: PMC6273452.

6: Varghese A, Savai J, Pandita N, Gaud R. In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes. Toxicol Rep. 2015 Feb 17;2:806-816. doi: 10.1016/j.toxrep.2015.02.008. PMID: 28962416; PMCID: PMC5598323.

7: Ye M, Tang L, Luo M, Zhou J, Guo B, Liu Y, Chen B. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations. Nanoscale Res Lett. 2014 Nov 28;9(1):642. doi: 10.1186/1556-276X-9-642. PMID: 25520592; PMCID: PMC4266508.

8: Yang J, Liu D, Jing W, Dahms HU, Wang L. Effects of cadmium on lipid storage and metabolism in the freshwater crab Sinopotamon henanense. PLoS One. 2013 Oct 10;8(10):e77569. doi: 10.1371/journal.pone.0077569. PMID: 24130894; PMCID: PMC3795049.

9: Xie C, Zhong D, Chen X. A fragmentation-based method for the differentiation of glutathione conjugates by high-resolution mass spectrometry with electrospray ionization. Anal Chim Acta. 2013 Jul 25;788:89-98. doi: 10.1016/j.aca.2013.06.022. Epub 2013 Jun 20. PMID: 23845486.

10: Zhu S, Zhao XE, Zhang W, Liu Z, Qi W, Anjum S, Xu G. Fluorescence detection of glutathione reductase activity based on deoxyribonucleic acid-templated silver nanoclusters. Anal Chim Acta. 2013 Jul 5;786:111-5. doi: 10.1016/j.aca.2013.04.067. Epub 2013 May 13. PMID: 23790299.

11: Zhu X, Kalyanaraman N, Subramanian R. Enhanced screening of glutathione- trapped reactive metabolites by in-source collision-induced dissociation and extraction of product ion using UHPLC-high resolution mass spectrometry. Anal Chem. 2011 Dec 15;83(24):9516-23. doi: 10.1021/ac202280f. Epub 2011 Nov 21. PMID: 22077671.