AEW-541 free base
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 204210

CAS#: 475489-16-8 (free base)

Description: AEW541, also known as NVP-AEW541, is a novel, potent IGF-IR kinase inhibitor. NVP-AEW541 is capable of distinguishing between the IGF-IR (IC50 = 0.086 microM) and the closely related InsR (IC50 = 2.3 microM) in cells. NVP- AEW541 abrogates IGF-I-mediated survival and colony formation in soft agar at concentrations that are consistent with inhibition of IGF-IR autophosphorylation. Note: AEW541 has a Cis-configuration on the cyclobutane ring. Its CAS# is 475489-16-8. Many vendors and Sc-finder scholar made mistake - AEW541 was mistakenly listed as CAS#475488-34-7, the trans-isomer of AEW541. The correct structure of AEW541 can be confirmed from Joel Slade, et al (from Novartis), Org. Process Res. Dev. 2007, 11, 5, 825–835.


Chemical Structure

img
AEW-541 free base
CAS# 475489-16-8 (free base)

Theoretical Analysis

MedKoo Cat#: 204210
Name: AEW-541 free base
CAS#: 475489-16-8 (free base)
Chemical Formula: C27H29N5O
Exact Mass: 439.23721
Molecular Weight: 439.55
Elemental Analysis: C, 73.78; H, 6.65; N, 15.93; O, 3.64

Price and Availability

Size Price Availability Quantity
10.0mg USD 190.0 Same day
25.0mg USD 350.0 Same day
50.0mg USD 550.0 Same day
100.0mg USD 750.0 Same day
200.0mg USD 1250.0 Same day
500.0mg USD 2250.0 Same day
1.0g USD 3650.0 Same day
2.0g USD 5650.0 Same day
Click to view more sizes and prices
Bulk inquiry

Related CAS #: 2320261-63-8 (HCl)   475489-16-8 (free base)   475488-34-7 (trans-isomer free base)   1618643-96-1 (trans-isomer HCl)   AEW541 mesylate  

Synonym: NVP-AEW541; NVP-AEW 541; NVP-AEW-541; AEW-541; AEW 541; AEW541;

IUPAC/Chemical Name: 7-((1s,3s)-3-(azetidin-1-ylmethyl)cyclobutyl)-5-(3-(benzyloxy)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine

InChi Key: AECDBHGVIIRMOI-GRGXKFILSA-N

InChi Code: InChI=1S/C27H29N5O/c28-26-25-24(21-8-4-9-23(14-21)33-17-19-6-2-1-3-7-19)16-32(27(25)30-18-29-26)22-12-20(13-22)15-31-10-5-11-31/h1-4,6-9,14,16,18,20,22H,5,10-13,15,17H2,(H2,28,29,30)/t20-,22+

SMILES Code: NC1=C2C(N([C@H]3C[C@@H](CN4CCC4)C3)C=C2C5=CC=CC(OCC6=CC=CC=C6)=C5)=NC=N1

Appearance: white solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO, not in water

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight 439.55 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Tsushima H, Yamada K. Effects of adipokine administration to the hypothalamic preoptic area on body temperature in rats. J Pharmacol Sci. 2020 Oct;144(2):61-68. doi: 10.1016/j.jphs.2020.07.005. Epub 2020 Jul 10. PMID: 32684333.

2: Liu S, Wu M, Hua Q, Lu D, Tian Y, Yu H, Cheng L, Chen Y, Cao J, Hu X, Tan F. Two old drugs, NVP-AEW541 and GSK-J4, repurposed against the Toxoplasma gondii RH strain. Parasit Vectors. 2020 May 11;13(1):242. doi: 10.1186/s13071-020-04094-2. PMID: 32393321; PMCID: PMC7216583.

3: Cannarella R, Arato I, Condorelli RA, Luca G, Barbagallo F, Alamo A, Bellucci C, Lilli C, La Vignera S, Calafiore R, Mancuso F, Calogero AE. The IGF1 Receptor Is Involved in Follicle-Stimulating Hormone Signaling in Porcine Neonatal Sertoli Cells. J Clin Med. 2019 Apr 27;8(5):577. doi: 10.3390/jcm8050577. PMID: 31035547; PMCID: PMC6571966.

4: Ding X, Han W, Wang J, Yang W, Chang XF, Zhu ZY, Qin H, Zhang JZ, Wang X, Wang HM. IGF-1 alleviates serum IgG-induced neuronal cytolysis through PI3K signaling in children with opsoclonus-myoclonus syndrome and neuroblastoma. Pediatr Res. 2019 May;85(6):885-894. doi: 10.1038/s41390-018-0251-1. Epub 2018 Dec 11. PMID: 30718793.

5: Liu R, Tang W, Han X, Geng R, Wang C, Zhang Z. Hepatocyte growth factor- induced mesenchymal-epithelial transition factor activation leads to insulin- like growth factor 1 receptor inhibitor unresponsiveness in gastric cancer cells. Oncol Lett. 2018 Nov;16(5):5983-5991. doi: 10.3892/ol.2018.9414. Epub 2018 Sep 6. PMID: 30333869; PMCID: PMC6176415.

6: Zorea J, Prasad M, Cohen L, Li N, Schefzik R, Ghosh S, Rotblat B, Brors B, Elkabets M. IGF1R upregulation confers resistance to isoform-specific inhibitors of PI3K in PIK3CA-driven ovarian cancer. Cell Death Dis. 2018 Sep 20;9(10):944. doi: 10.1038/s41419-018-1025-8. PMID: 30237504; PMCID: PMC6148236.

7: Yan Y, Qin Q, Wu L, Jing X, Deng S, She Q. Insulin-like growth factor 1 receptor signaling regulates embryonic epicardial cell proliferation through focal adhesion kinase pathway. Acta Biochim Biophys Sin (Shanghai). 2018 Oct 1;50(10):976-983. doi: 10.1093/abbs/gmy103. PMID: 30184089.

8: Yan B, Huang M, Zeng C, Yao N, Zhang J, Yan B, Jiang H, Tian X, Ao X, Zhao H, Zhou W, Chu J, Wang L, Xian CJ, Zhang Z, Wang L. Locally Produced IGF-1 Promotes Hypertrophy of the Ligamentum Flavum via the mTORC1 Signaling Pathway. Cell Physiol Biochem. 2018;48(1):293-303. doi: 10.1159/000491729. Epub 2018 Jul 17. PMID: 30016763.

9: Wang Y, Mak JCW, Lee MYK, Xu A, Ip MSM. Low-Frequency Intermittent Hypoxia Promotes Subcutaneous Adipogenic Differentiation. Oxid Med Cell Longev. 2018 Mar 12;2018:4501757. doi: 10.1155/2018/4501757. PMID: 29721149; PMCID: PMC5867560.

10: Saera-Vila A, Louie KW, Sha C, Kelly RM, Kish PE, Kahana A. Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors. PLoS One. 2018 Feb 7;13(2):e0192214. doi: 10.1371/journal.pone.0192214. PMID: 29415074; PMCID: PMC5802911.

11: Ali D, Abuelreich S, Alkeraishan N, Shwish NB, Hamam R, Kassem M, Alfayez M, Aldahmash A, Alajez NM. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells. Biosci Rep. 2018 Jan 30;38(1):BSR20171252. doi: 10.1042/BSR20171252. PMID: 29298881; PMCID: PMC5789155.

12: Selfe J, Goddard NC, McIntyre A, Taylor KR, Renshaw J, Popov SD, Thway K, Summersgill B, Huddart RA, Gilbert DC, Shipley JM. IGF1R signalling in testicular germ cell tumour cells impacts on cell survival and acquired cisplatin resistance. J Pathol. 2018 Feb;244(2):242-253. doi: 10.1002/path.5008. Epub 2018 Jan 10. PMID: 29160922; PMCID: PMC5817239.

13: Codony-Servat J, Cuatrecasas M, Asensio E, Montironi C, Martínez-Cardús A, Marín-Aguilera M, Horndler C, Martínez-Balibrea E, Rubini M, Jares P, Reig O, Victoria I, Gaba L, Martín-Richard M, Alonso V, Escudero P, Fernández-Martos C, Feliu J, Méndez JC, Méndez M, Gallego J, Salud A, Rojo F, Castells A, Prat A, Rosell R, García-Albéniz X, Camps J, Maurel J. Nuclear IGF-1R predicts chemotherapy and targeted therapy resistance in metastatic colorectal cancer. Br J Cancer. 2017 Dec 5;117(12):1777-1786. doi: 10.1038/bjc.2017.279. Epub 2017 Nov 9. PMID: 29123263; PMCID: PMC5729466.

14: Gohr K, Hamacher A, Engelke LH, Kassack MU. Inhibition of PI3K/Akt/mTOR overcomes cisplatin resistance in the triple negative breast cancer cell line HCC38. BMC Cancer. 2017 Nov 3;17(1):711. doi: 10.1186/s12885-017-3695-5. PMID: 29100507; PMCID: PMC5670521.

15: May CD, Landers SM, Bolshakov S, Ma X, Ingram DR, Kivlin CM, Watson KL, Sannaa GAA, Bhalla AD, Wang WL, Lazar AJ, Torres KE. Co-targeting PI3K, mTOR, and IGF1R with small molecule inhibitors for treating undifferentiated pleomorphic sarcoma. Cancer Biol Ther. 2017 Oct 3;18(10):816-826. doi: 10.1080/15384047.2017.1373230. Epub 2017 Nov 3. Erratum in: Cancer Biol Ther. 2018 Feb 1;19(2):138. PMID: 29099264; PMCID: PMC5678691.

16: Hamilton N, Austin D, Márquez-Garbán D, Sanchez R, Chau B, Foos K, Wu Y, Vadgama J, Pietras R. Receptors for Insulin-Like Growth Factor-2 and Androgens as Therapeutic Targets in Triple-Negative Breast Cancer. Int J Mol Sci. 2017 Nov 2;18(11):2305. doi: 10.3390/ijms18112305. PMID: 29099049; PMCID: PMC5713274.

17: Neuzillet Y, Chapeaublanc E, Krucker C, De Koning L, Lebret T, Radvanyi F, Bernard-Pierrot I. IGF1R activation and the in vitro antiproliferative efficacy of IGF1R inhibitor are inversely correlated with IGFBP5 expression in bladder cancer. BMC Cancer. 2017 Sep 7;17(1):636. doi: 10.1186/s12885-017-3618-5. PMID: 28882129; PMCID: PMC5588742.

18: Oberthür R, Seemann H, Gehrig J, Rave-Fränk M, Bremmer F, Halpape R, Conradi LC, Scharf JG, Burfeind P, Kaulfuß S. Simultaneous inhibition of IGF1R and EGFR enhances the efficacy of standard treatment for colorectal cancer by the impairment of DNA repair and the induction of cell death. Cancer Lett. 2017 Oct 28;407:93-105. doi: 10.1016/j.canlet.2017.08.009. Epub 2017 Aug 18. PMID: 28823963.

19: Tsushima H, Morimoto S, Fujishiro M, Yoshida Y, Hayakawa K, Hirai T, Miyashita T, Ikeda K, Yamaji K, Takamori K, Takasaki Y, Sekigawa I, Tamura N. Kinase inhibitors of the IGF-1R as a potential therapeutic agent for rheumatoid arthritis. Autoimmunity. 2017 Aug;50(5):329-335. doi: 10.1080/08916934.2017.1344970. Epub 2017 Jul 6. PMID: 28682648.

20: Stanley A, Ashrafi GH, Seddon AM, Modjtahedi H. Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET and Src targeting agents in breast cancer cell lines. Sci Rep. 2017 Jun 21;7(1):3964. doi: 10.1038/s41598-017-04301-8. PMID: 28638122; PMCID: PMC5479850.



Additional Information

In vivo, this orally bioavailable compound inhibits IGF-IR signaling in tumor xenografts and significantly reduces the growth of IGF-IR-driven fibrosarcomas. Thus, NVP- AEW541 represents a class of selective, small molecule IGF-IR kinase inhibitors with proven in vivo antitumor activity and potential therapeutic application.