DAPTA acetate
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 464332

CAS#: unknown

Description: DAPTA is a peptide antagonist of chemokine (C-C motif) receptor 5 (CCR5). It inhibits CD4-dependent binding of HIV-1Ba-L and HIV-1CM235 gp120 envelope proteins to CCR5 (IC50s = 0.06 and 0.32 nM, respectively). DAPTA (0.1 mg/kg, i.p.) reduces marble burying and repetitive behavior, as well as decreases brain levels of IL-6, IL-9, and IL-17A, in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorder (ASD). It also reduces LPS-induced microglial activation and astrocyte hypertrophy in the dentate gyrus in a rat model of chronic neuroinflammation.


Chemical Structure

img
DAPTA acetate
CAS# unknown

Theoretical Analysis

MedKoo Cat#: 464332
Name: DAPTA acetate
CAS#: unknown
Chemical Formula: C37H60N10O17
Exact Mass: 916.41
Molecular Weight: 916.940
Elemental Analysis: C, 48.47; H, 6.60; N, 15.28; O, 29.66

Price and Availability

Size Price Availability Quantity
5mg USD 250 2 Weeks
25mg USD 450 2 Weeks
50mg USD 750 2 Weeks
Bulk inquiry

Synonym: DAPTA acetate; D-Ala-peptide T-amide;

IUPAC/Chemical Name: (S)-2-((2S,5S,8S,11S,14R)-14-amino-2,5,8-tris((R)-1-hydroxyethyl)-11-(hydroxymethyl)-4,7,10,13-tetraoxo-3,6,9,12-tetraazapentadecanamido)-N1-((S)-1-(((2S,3R)-1-amino-3-hydroxy-1-oxobutan-2-yl)amino)-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)succinamide acetate

InChi Key: RNRQNIXDWUFGFX-ZPGAAPGCSA-N

InChi Code: InChI=1S/C35H56N10O15.C2H4O2/c1-13(36)29(54)41-22(12-46)32(57)43-26(16(4)49)34(59)45-27(17(5)50)35(60)44-25(15(3)48)33(58)40-21(11-23(37)52)30(55)39-20(10-18-6-8-19(51)9-7-18)31(56)42-24(14(2)47)28(38)53;1-2(3)4/h6-9,13-17,20-22,24-27,46-51H,10-12,36H2,1-5H3,(H2,37,52)(H2,38,53)(H,39,55)(H,40,58)(H,41,54)(H,42,56)(H,43,57)(H,44,60)(H,45,59);1H3,(H,3,4)/t13-,14-,15-,16-,17-,20+,21+,22+,24+,25+,26+,27+;/m1./s1

SMILES Code: OC1=CC=C(C[C@H](NC([C@@H](NC([C@@H](NC([C@@H](NC([C@@H](NC([C@@H](NC([C@@H](C)N)=O)CO)=O)[C@@H](C)O)=O)[C@@H](C)O)=O)[C@@H](C)O)=O)CC(N)=O)=O)C(N[C@@H]([C@@H](C)O)C(N)=O)=O)C=C1.CC(O)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMSO:PBS (pH 7.2) (1:4) 0.2 0.00
DMSO 1.0 0.00

Preparing Stock Solutions

The following data is based on the product molecular weight 916.94 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Detering L, Abdilla A, Luehmann HP, Williams JW, Huang LH, Sultan D, Elvington A, Heo GS, Woodard PK, Gropler RJ, Randolph GJ, Hawker CJ, Liu Y. CC Chemokine Receptor 5 Targeted Nanoparticles Imaging the Progression and Regression of Atherosclerosis Using Positron Emission Tomography/Computed Tomography. Mol Pharm. 2021 Mar 1;18(3):1386-1396. doi: 10.1021/acs.molpharmaceut.0c01183. Epub 2021 Feb 16. PMID: 33591187.

2: Mahmoud AG, Smoleński P, Guedes da Silva MFC, Pombeiro AJL. Water-Soluble O-, S- and Se-Functionalized Cyclic Acetyl-triaza-phosphines. Synthesis, Characterization and Application in Catalytic Azide-alkyne Cycloaddition. Molecules. 2020 Nov 23;25(22):5479. doi: 10.3390/molecules25225479. PMID: 33238623; PMCID: PMC7700463.

3: Schutte-Smith M, Marker SC, Wilson JJ, Visser HG. Aquation and Anation Kinetics of Rhenium(I) Dicarbonyl Complexes: Relation to Cell Toxicity and Bioavailability. Inorg Chem. 2020 Nov 2;59(21):15888-15897. doi: 10.1021/acs.inorgchem.0c02389. Epub 2020 Oct 21. PMID: 33084304.

4: Pinto A, Spigolon G, Gavara R, Zonta C, Licini G, Rodríguez L. Tripodal gold(i) polypyridyl complexes and their Cu+ and Zn2+ heterometallic derivatives. Effects on luminescence. Dalton Trans. 2020 Nov 7;49(41):14613-14625. doi: 10.1039/d0dt02564j. Epub 2020 Oct 15. PMID: 33057515.

5: Anstey MR, Bost JL, Grumman AS, Kennedy ND, Whited MT. Crystal structures of trans-acetyl-dicarbon-yl(η5-cyclo-penta-dien-yl)(1,3,5-tri- aza-7-phosphaadamantane)molybdenum(II) and trans-acetyl-di-carbon- yl(η5-cyclo-penta-dien-yl)(3,7-diacetyl-1,3,7-tri-aza-5-phosphabi- cyclo-[3.3.1]nona-ne)molyb-den-um(II). Acta Crystallogr E Crystallogr Commun. 2020 Mar 17;76(Pt 4):547-551. doi: 10.1107/S2056989020003679. PMID: 32280501; PMCID: PMC7133026.

6: Aguirre A, González-Rodríguez S, García-Domínguez M, Lastra A, Gutiérrez- Fernández A, Hidalgo A, Menéndez L, Baamonde A. Dual dose-related effects evoked by CCL4 on thermal nociception after gene delivery or exogenous administration in mice. Biochem Pharmacol. 2020 May;175:113903. doi: 10.1016/j.bcp.2020.113903. Epub 2020 Mar 8. PMID: 32156658.

7: Gao R, Fang Q, Zhang X, Xu Q, Ye H, Guo W, He J, Chen Y, Wang R, Wu Z, Yu J. R5 HIV-1 gp120 Activates p38 MAPK to Induce Rat Cardiomyocyte Injury by the CCR5 Coreceptor. Pathobiology. 2019;86(5-6):274-284. doi: 10.1159/000502238. Epub 2019 Oct 1. PMID: 31574524.

8: Dalmases M, Pinto A, Lippmann P, Ott I, Rodríguez L, Figuerola A. Preparation and Antitumoral Activity of Au-Based Inorganic-Organometallic Nanocomposites. Front Chem. 2019 Feb 8;7:60. doi: 10.3389/fchem.2019.00060. PMID: 30800652; PMCID: PMC6375849.

9: Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alotaibi MR, Alasmari AF, Alshammari MA, Al-Mazroua HA, Attia SM. DAPTA, a C-C chemokine receptor 5 (CCR5) antagonist attenuates immune aberrations by downregulating Th9/Th17 immune responses in BTBR T+ Itpr3tf/J mice. Eur J Pharmacol. 2019 Mar 5;846:100-108. doi: 10.1016/j.ejphar.2019.01.016. Epub 2019 Jan 15. PMID: 30658114.

10: Mahmoud AG, Guedes da Silva MFC, Śliwa EI, Smoleński P, Kuznetsov ML, Pombeiro AJL. Copper(II) and Sodium(I) Complexes based on 3,7-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-oxide: Synthesis, Characterization, and Catalytic Activity. Chem Asian J. 2018 Oct 4;13(19):2868-2880. doi: 10.1002/asia.201800799. Epub 2018 Aug 31. PMID: 29947049.

11: García-Domínguez M, Lastra A, Folgueras AR, Cernuda-Cernuda R, Fernández- García MT, Hidalgo A, Menéndez L, Baamonde A. The Chemokine CCL4 (MIP-1β) Evokes Antinociceptive Effects in Mice: a Role for CD4+ Lymphocytes and Met- Enkephalin. Mol Neurobiol. 2019 Mar;56(3):1578-1595. doi: 10.1007/s12035-018-1176-8. Epub 2018 Jun 15. PMID: 29907903.

12: Mahmoud AG , Guedes da Silva MFC , Sokolnicki J , Smoleński P , Pombeiro AJL . Hydrosoluble Cu(i)-DAPTA complexes: synthesis, characterization, luminescence thermochromism and catalytic activity for microwave-assisted three-component azide-alkyne cycloaddition click reaction. Dalton Trans. 2018 May 29;47(21):7290-7299. doi: 10.1039/c8dt01232f. PMID: 29767654.

13: Liu Y, Woodard PK. Chemokine receptors: Key for molecular imaging of inflammation in atherosclerosis. J Nucl Cardiol. 2019 Aug;26(4):1179-1181. doi: 10.1007/s12350-018-1248-1. Epub 2018 Mar 7. PMID: 29516368; PMCID: PMC6128785.

14: Wei L, Petryk J, Gaudet C, Kamkar M, Gan W, Duan Y, Ruddy TD. Development of an inflammation imaging tracer, 111In-DOTA-DAPTA, targeting chemokine receptor CCR5 and preliminary evaluation in an ApoE-/- atherosclerosis mouse model. J Nucl Cardiol. 2019 Aug;26(4):1169-1178. doi: 10.1007/s12350-018-1203-1. Epub 2018 Feb 7. PMID: 29417414.

15: Marker SC, MacMillan SN, Zipfel WR, Li Z, Ford PC, Wilson JJ. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water- Soluble Phosphines. Inorg Chem. 2018 Feb 5;57(3):1311-1331. doi: 10.1021/acs.inorgchem.7b02747. Epub 2018 Jan 11. PMID: 29323880.

16: Noda M, Tomonaga D, Kitazono K, Yoshioka Y, Liu J, Rousseau JP, Kinkead R, Ruff MR, Pert CB. Neuropathic pain inhibitor, RAP-103, is a potent inhibitor of microglial CCL1/CCR8. Neurochem Int. 2018 Oct;119:184-189. doi: 10.1016/j.neuint.2017.12.005. Epub 2017 Dec 14. PMID: 29248693.

17: Lu Y, Jiang BC, Cao DL, Zhao LX, Zhang YL. Chemokine CCL8 and its receptor CCR5 in the spinal cord are involved in visceral pain induced by experimental colitis in mice. Brain Res Bull. 2017 Oct;135:170-178. doi: 10.1016/j.brainresbull.2017.10.009. Epub 2017 Oct 14. PMID: 29037608.

18: Gavara R, Pinto A, Donamaría R, Olmos ME, López de Luzuriaga JM, Rodríguez L. Polarized Supramolecular Aggregates Based on Luminescent Perhalogenated Gold Derivatives. Inorg Chem. 2017 Oct 2;56(19):11946-11955. doi: 10.1021/acs.inorgchem.7b01901. Epub 2017 Sep 11. PMID: 28891649.

19: Dong M, Horitani M, Dzikovski B, Freed JH, Ealick SE, Hoffman BM, Lin H. Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis. J Am Chem Soc. 2017 Apr 26;139(16):5680-5683. doi: 10.1021/jacs.7b01712. Epub 2017 Apr 13. PMID: 28383907; PMCID: PMC5664936.

20: Shaw AE, Bamburg JR. Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders. Pharmacol Ther. 2017 Jul;175:17-27. doi: 10.1016/j.pharmthera.2017.02.031. Epub 2017 Feb 20. PMID: 28232023; PMCID: PMC5466456.