4-Nitrophenyl Palmitate
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 463373

CAS#: 1492-30-4

Description: 4-Nitrophenyl palmitate is a colorimetric lipase and esterase substrate. Upon enzymatic hydrolysis of 4-nitrophenyl palmitate, 4-nitrophenol is released which can be quantified by colorimetric detection at 410 nm as a measure of enzyme activity. 4-Nitrophenyl palmitate has been used to characterize the activity of various bacterial and mammalian enzymes, including Burkholderia and porcine pancreatic lipases.


Chemical Structure

img
4-Nitrophenyl Palmitate
CAS# 1492-30-4

Theoretical Analysis

MedKoo Cat#: 463373
Name: 4-Nitrophenyl Palmitate
CAS#: 1492-30-4
Chemical Formula: C22H35NO4
Exact Mass: 377.2566
Molecular Weight: 377.525
Elemental Analysis: C, 69.99; H, 9.35; N, 3.71; O, 16.95

Price and Availability

Size Price Availability Quantity
1.0g USD 210.0 2 Weeks
5.0g USD 380.0 2 Weeks
10.0g USD 630.0 2 Weeks
25.0g USD 990.0 2 Weeks
Bulk inquiry

Synonym: 4-Nitrophenyl Palmitate; p-Nitrophenyl Palmitate; para-Nitrophenyl Palmitate; pNpp;

IUPAC/Chemical Name: 4-nitrophenyl palmitate

InChi Key: LVZSQWIWCANHPF-UHFFFAOYSA-N

InChi Code: InChI=1S/C22H35NO4/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-22(24)27-21-18-16-20(17-19-21)23(25)26/h16-19H,2-15H2,1H3

SMILES Code: O=C(OC1=CC=C(C=C1)[N+]([O-])=O)CCCCCCCCCCCCCCC

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight 377.525 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Sankar K, Lenisha D, Janaki G, Juliana J, Kumar RS, Selvi MC, Srinivasan G. Digital image-based quantification of chlorpyrifos in water samples using a lipase embedded paper based device. Talanta. 2020 Feb 1;208:120408. doi: 10.1016/j.talanta.2019.120408. Epub 2019 Sep 30. PMID: 31816733.

2: Tee CB, Sei Y, Kajiwara S. Secreted Hydrolytic and Haemolytic Activities of Malassezia Clinical Strains. Mycopathologia. 2019 Apr;184(2):227-238. doi: 10.1007/s11046-019-00330-1. Epub 2019 Mar 27. PMID: 30919309.

3: Kotogán A, Zambrano C, Kecskeméti A, Varga M, Szekeres A, Papp T, Vágvölgyi C, Takó M. An Organic Solvent-Tolerant Lipase with Both Hydrolytic and Synthetic Activities from the Oleaginous Fungus Mortierella echinosphaera. Int J Mol Sci. 2018 Apr 10;19(4):1129. doi: 10.3390/ijms19041129. PMID: 29642574; PMCID: PMC5979600.

4: Veteikytė A, Šiekštelė R, Tvaska B, Matijošytė I. Sequential application of waste whey as a medium component for Kluyveromyces lactis cultivation and a co- feeder for lipase immobilization by CLEA method. Appl Microbiol Biotechnol. 2017 May;101(9):3617-3626. doi: 10.1007/s00253-017-8131-x. Epub 2017 Feb 2. PMID: 28155071.

5: Xia GH, Liu W, Jiang XP, Wang XY, Zhang YW, Guo J. Surface Modification of Fe(3)O(4)@SiO(2) Magnetic Nanoparticles for Immobilization of Lipase. J Nanosci Nanotechnol. 2017 Jan;17(1):370-6. doi: 10.1166/jnn.2017.10964. PMID: 29620837.

6: Takó M, KotogÁn A, Papp T, Kadaikunnan S, Alharbi NS, VÁgvölgyi C. Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity from Rhizomucor miehei and Rhizopus oryzae. J Microbiol Biotechnol. 2017 Feb 28;27(2):277-288. doi: 10.4014/jmb.1608.08005. PMID: 27780957.

7: Ganasen M, Yaacob N, Rahman RN, Leow AT, Basri M, Salleh AB, Ali MS. Cold- adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas. Int J Biol Macromol. 2016 Nov;92:1266-1276. doi: 10.1016/j.ijbiomac.2016.06.095. Epub 2016 Aug 6. PMID: 27506122.

8: Gururaj P, Ramalingam S, Nandhini Devi G, Gautam P. Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07. Braz J Microbiol. 2016 Jul-Sep;47(3):647-57. doi: 10.1016/j.bjm.2015.04.002. Epub 2016 Apr 26. PMID: 27268114; PMCID: PMC4927683.

9: Wang G, Liu Z, Xu L, Zhang H, Yan Y. Probing role of key residues in the divergent evolution of Yarrowia lipolytica lipase 2 and Aspergillus niger eruloyl esterase A. Microbiol Res. 2015 Sep;178:27-34. doi: 10.1016/j.micres.2015.05.011. Epub 2015 Jun 11. PMID: 26302844.

10: Subinya M, Steudle AK, Jurkowski TP, Stubenrauch C. Conformation and activity of lipase B from Candida antarctica in bicontinuous microemulsions. Colloids Surf B Biointerfaces. 2015 Jul 1;131:108-14. doi: 10.1016/j.colsurfb.2015.04.041. Epub 2015 Apr 27. PMID: 25973762.

11: Zdarta J, Klapiszewski Ł, Wysokowski M, Norman M, Kołodziejczak-Radzimska A, Moszyński D, Ehrlich H, Maciejewski H, Stelling AL, Jesionowski T. Chitin-lignin material as a novel matrix for enzyme immobilization. Mar Drugs. 2015 Apr 20;13(4):2424-46. doi: 10.3390/md13042424. PMID: 25903282; PMCID: PMC4413219.

12: Krause J, Oeldorf T, Schembecker G, Merz J. Enzymatic hydrolysis in an aqueous organic two-phase system using centrifugal partition chromatography. J Chromatogr A. 2015 Apr 24;1391:72-9. doi: 10.1016/j.chroma.2015.02.071. Epub 2015 Mar 5. PMID: 25773726.

13: Guo J, Chen CP, Wang SG, Huang XJ. A convenient test for lipase activity in aqueous-based solutions. Enzyme Microb Technol. 2015 Apr;71:8-12. doi: 10.1016/j.enzmictec.2015.01.005. Epub 2015 Jan 25. PMID: 25765304.

14: Brogan AP, Sharma KP, Perriman AW, Mann S. Enzyme activity in liquid lipase melts as a step towards solvent-free biology at 150 °C. Nat Commun. 2014 Oct 6;5:5058. doi: 10.1038/ncomms6058. PMID: 25284507.

15: Cai X, Ma J, Wei DZ, Lin JP, Wei W. Functional expression of a novel alkaline-adapted lipase of Bacillus amyloliquefaciens from stinky tofu brine and development of immobilized enzyme for biodiesel production. Antonie Van Leeuwenhoek. 2014 Nov;106(5):1049-60. doi: 10.1007/s10482-014-0274-5. Epub 2014 Sep 9. PMID: 25199563.

16: Ganasen P, Khan MR, Kalam MA, Mahmud MS. Effect of visible light on catalytic hydrolysis of p-nitrophenyl palmitate by the Pseudomonas cepacia lipase immobilized on sol-gel support. Bioprocess Biosyst Eng. 2014 Nov;37(11):2353-9. doi: 10.1007/s00449-014-1213-6. Epub 2014 May 31. PMID: 24879090.

17: Hrydziuszko Z, Dmytryk A, Majewska P, Szymańska K, Liesiene J, Jarzębski A, Bryjak J. Screening of lipase carriers for reactions in water, biphasic and pure organic solvent systems. Acta Biochim Pol. 2014;61(1):1-6. Epub 2014 Mar 17. PMID: 24644546.

18: Kranen E, Detzel C, Weber T, Jose J. Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs. Microb Cell Fact. 2014 Jan 29;13:19. doi: 10.1186/1475-2859-13-19. PMID: 24476025; PMCID: PMC3910678.

19: Zhu SS, Li M, Yu X, Xu Y. Role of Met93 and Thr96 in the lid hinge region of Rhizopus chinensis lipase. Appl Biochem Biotechnol. 2013 May;170(2):436-47. doi: 10.1007/s12010-013-0209-z. Epub 2013 Apr 2. PMID: 23546870.

20: Mehta A, Kumar R, Gupta R. Isolation of lipase producing thermophilic bacteria: optimization of production and reaction conditions for lipase from Geobacillus sp. Acta Microbiol Immunol Hung. 2012 Dec;59(4):435-50. doi: 10.1556/AMicr.59.2012.4.1. PMID: 23195552.