Calphostin C

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 412247

CAS#: 121263-19-2 (C)

Description: The calphostins are a class of closely related chemical compounds isolated from the fungus Cladosporium cladosporioides. The known calphostins include calphostin A, calphostin B, calphostin C, calphostin D, and calphostin I. The calphostins are inhibitors of protein kinase C (PKC). The most potent member of the series, calphostin C, has found use as a biochemical tool because of this activity.


Chemical Structure

img
Calphostin C
CAS# 121263-19-2 (C)

Theoretical Analysis

MedKoo Cat#: 412247
Name: Calphostin C
CAS#: 121263-19-2 (C)
Chemical Formula: C44H38O14
Exact Mass: 790.23
Molecular Weight: 790.770
Elemental Analysis: C, 66.83; H, 4.84; O, 28.32

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Related CAS #: 120461-92-9 (A)   121263-19-2 (C)   124824-06-2 (B)   124857-59-6 (I)   124986-26-1 (D)  

Synonym: Calphostin C; UCN1028C; UCN-1028C; UCN 1028C

IUPAC/Chemical Name: Carbonic acid, 2-(12-(2-(benzoyloxy)propyl)-3,10-dihydro-4,9-dihydroxy-2,6,7,11-tetramethoxy-3,10-dioxo-1-perylenyl)-1-methylethyl 4-hydroxyphenyl ester

InChi Key: SRJYZPCBWDVSGO-UHFFFAOYSA-N

InChi Code: InChI=1S/C44H38O14/c1-20(56-43(50)22-10-8-7-9-11-22)16-25-31-32-26(17-21(2)57-44(51)58-24-14-12-23(45)13-15-24)42(55-6)40(49)34-28(47)19-30(53-4)36(38(32)34)35-29(52-3)18-27(46)33(37(31)35)39(48)41(25)54-5/h7-15,18-21,45-47H,16-17H2,1-6H3

SMILES Code: O=C(OC1=CC=C(O)C=C1)OC(C)CC2=C(OC)C(C(C(O)=CC(OC)=C3C4=C(OC)C=C(O)C5=C64)=C3C2=C6C(CC(OC(C7=CC=CC=C7)=O)C)=C(OC)C5=O)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 790.77 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Zhang L, Leng TD, Yang T, Li J, Xiong ZG. Protein Kinase C Regulates ASIC1a Protein Expression and Channel Function via NF-kB Signaling Pathway. Mol Neurobiol. 2020 Nov;57(11):4754-4766. doi: 10.1007/s12035-020-02056-4. Epub 2020 Aug 11. PMID: 32783140.

2: Ozen G, Aljesri K, Celik Z, Turkyılmaz G, Turkyılmaz S, Teskin O, Norel X, Topal G. Mechanism of thromboxane receptor-induced vasoconstriction in human saphenous vein. Prostaglandins Other Lipid Mediat. 2020 Jul 25;151:106476. doi: 10.1016/j.prostaglandins.2020.106476. Epub ahead of print. PMID: 32721526.

3: Gerbino A, De Zio R, Russo D, Milella L, Milano S, Procino G, Pusch M, Svelto M, Carmosino M. Role of PKC in the Regulation of the Human Kidney Chloride Channel ClC-Ka. Sci Rep. 2020 Jun 24;10(1):10268. doi: 10.1038/s41598-020-67219-8. Erratum in: Sci Rep. 2020 Sep 30;10(1):16469. PMID: 32581267; PMCID: PMC7314819.

4: Hwang M, Kim JN, Kim BJ. Hesperidin depolarizes the pacemaker potentials through 5-HT4 receptor in murine small intestinal interstitial cells of Cajal. Anim Cells Syst (Seoul). 2020 Mar 26;24(2):84-90. doi: 10.1080/19768354.2020.1746398. PMID: 32489687; PMCID: PMC7241530.

5: Lu CW, Lin TY, Wang SJ. 11-Keto-β-Boswellic Acid Attenuates Glutamate Release and Kainic Acid-Induced Excitotoxicity in the Rat Hippocampus. Planta Med. 2020 Apr;86(6):434-441. doi: 10.1055/a-1107-9337. Epub 2020 Feb 25. PMID: 32097973.

6: Kuo KL, Zhao JF, Huang PH, Guo BC, Tarng DC, Lee TS. Indoxyl sulfate impairs valsartan-induced neovascularization. Redox Biol. 2020 Feb;30:101433. doi: 10.1016/j.redox.2020.101433. Epub 2020 Jan 14. PMID: 31972507; PMCID: PMC6974788.

7: Tanahashi Y, Katsurada T, Inasaki N, Uchiyama M, Sakamoto T, Yamamoto M, Matsuyama H, Komori S, Unno T. Further characterization of the synergistic activation mechanism of cationic channels by M2 and M3 muscarinic receptors in mouse intestinal smooth muscle cells. Am J Physiol Cell Physiol. 2020 Mar 1;318(3):C514-C523. doi: 10.1152/ajpcell.00277.2019. Epub 2019 Dec 25. PMID: 31875697.

8: Hameed A, Raza SA, Israr Khan M, Baral J, Adhikari A, Nur-E-Alam M, Ahmed S, Al-Rehaily AJ, Ashraf S, Ul-Haq Z, Hafizur RM. Tambulin from Zanthoxylum armatum acutely potentiates the glucose-induced insulin secretion via KATP-independent Ca2+-dependent amplifying pathway. Biomed Pharmacother. 2019 Dec;120:109348. doi: 10.1016/j.biopha.2019.109348. Epub 2019 Oct 17. PMID: 31629954.

9: Chakkour M, Kreydiyyeh S. FTY720P Upregulates the Na+/K+ ATPase in HepG2 Cells by Activating S1PR3 and Inducing PGE2 Release. Cell Physiol Biochem. 2019;53(3):518-531. doi: 10.33594/000000155. PMID: 31502430.

10: El Moussawi L, Chakkour M, Kreydiyyeh S. The epinephrine-induced PGE2 reduces Na+/K+ ATPase activity in Caco-2 cells via PKC, NF-κB and NO. PLoS One. 2019 Aug 8;14(8):e0220987. doi: 10.1371/journal.pone.0220987. PMID: 31393950; PMCID: PMC6687175.

11: Liu Y, Chen F, Ji L, Zhang L, Xu YJ, Dhalla NS. Role of lysophosphatidic acid in vascular smooth muscle cell proliferation. Can J Physiol Pharmacol. 2020 Feb;98(2):103-110. doi: 10.1139/cjpp-2019-0264. Epub 2019 Aug 1. PMID: 31369714.

12: Kitazawa R, Kinto-Shibahara S, Haraguchi R, Kohara Y, Kitazawa S. Activation of protein kinase C accelerates murine osteoclastogenesis partly via transactivation of RANK gene through functional AP-1 responsive element in RANK gene promoter. Biochem Biophys Res Commun. 2019 Jul 23;515(2):268-274. doi: 10.1016/j.bbrc.2019.05.144. Epub 2019 May 28. PMID: 31146918.

13: Ruan JP, Chen L, Ma ZL. Activation of spinal Extacellular Signal-Regulated Kinases and c-jun N-terminal kinase signaling pathways contributes to morphine- induced acute and chronic hyperalgesia in mice. J Cell Biochem. 2019 Sep;120(9):15045-15056. doi: 10.1002/jcb.28766. Epub 2019 Apr 23. PMID: 31016764.

14: Bär L, Hase P, Föller M. PKC regulates the production of fibroblast growth factor 23 (FGF23). PLoS One. 2019 Mar 28;14(3):e0211309. doi: 10.1371/journal.pone.0211309. PMID: 30921339; PMCID: PMC6438472.

15: Kou ZW, Mo JL, Wu KW, Qiu MH, Huang YL, Tao F, Lei Y, Lv LL, Sun FY. Vascular endothelial growth factor increases the function of calcium-impermeable AMPA receptor GluA2 subunit in astrocytes via activation of protein kinase C signaling pathway. Glia. 2019 Jul;67(7):1344-1358. doi: 10.1002/glia.23609. Epub 2019 Mar 18. PMID: 30883902; PMCID: PMC6594043.

16: Ribeiro MC, Peruchetti DB, Silva LS, Silva-Filho JL, Souza MC, Henriques MDG, Caruso-Neves C, Pinheiro AAS. LPS Induces mTORC1 and mTORC2 Activation During Monocyte Adhesion. Front Mol Biosci. 2018 Jul 18;5:67. doi: 10.3389/fmolb.2018.00067. PMID: 30073169; PMCID: PMC6058081.

17: Zambrana S, Lundqvist LCE, Mamani O, Catrina SB, Gonzales E, Östenson CG. Lupinus mutabilis Extract Exerts an Anti-Diabetic Effect by Improving Insulin Release in Type 2 Diabetic Goto-Kakizaki Rats. Nutrients. 2018 Jul 20;10(7):933. doi: 10.3390/nu10070933. PMID: 30037028; PMCID: PMC6073986.

18: Wang B, Murakami Y, Ono M, Fujikawa S, Matsuyama H, Unno T, Naitou K, Tanahashi Y. Muscarinic suppression of ATP-sensitive K+ channels mediated by the M3/Gq/11/phospholipase C pathway contributes to mouse ileal smooth muscle contractions. Am J Physiol Gastrointest Liver Physiol. 2018 Oct 1;315(4):G618-G630. doi: 10.1152/ajpgi.00069.2018. Epub 2018 Jul 12. PMID: 30001145.

19: Kim JN, Kim HJ, Kim I, Kim YT, Kim BJ. The Mechanism of Action of Zingerone in the Pacemaker Potentials of Interstitial Cells of Cajal Isolated from Murine Small Intestine. Cell Physiol Biochem. 2018;46(5):2127-2137. doi: 10.1159/000489453. Epub 2018 Apr 28. PMID: 29723849.

20: Kim D, Kim JN, Nam JH, Lee JR, Kim SC, Kim BJ. Modulation of Pacemaker Potentials in Murine Small Intestinal Interstitial Cells of Cajal by Gamisoyo- San, a Traditional Chinese Herbal Medicine. Digestion. 2018;98(1):56-68. doi: 10.1159/000487186. Epub 2018 Apr 19. PMID: 29672308.