WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 555875

CAS#: 2097938-51-5

Description: R10015 is potent DNA synthesis inhibitor and virus inhibitor. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs.

Chemical Structure

CAS# 2097938-51-5

Theoretical Analysis

MedKoo Cat#: 555875
Name: R10015
CAS#: 2097938-51-5
Chemical Formula: C20H19ClN6O2
Exact Mass: 410.1258
Molecular Weight: 410.862
Elemental Analysis: C, 58.47; H, 4.66; Cl, 8.63; N, 20.46; O, 7.79

Price and Availability

Size Price Availability Quantity
25.0mg USD 250.0 2 Weeks
50.0mg USD 450.0 2 Weeks
100.0mg USD 750.0 2 Weeks
200.0mg USD 1250.0 2 Weeks
500.0mg USD 1950.0 2 Weeks
1.0g USD 2950.0 2 Weeks
2.0g USD 5250.0 2 Weeks
Bulk inquiry

Synonym: R-10015; R 10015; R10015;

IUPAC/Chemical Name: Methyl 2-(1-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperidin-4-yl)-1H-benzo[d]imidazole-5-carboxylate


InChi Code: InChI=1S/C20H19ClN6O2/c1-29-20(28)12-2-3-14-15(8-12)26-17(25-14)11-4-6-27(7-5-11)19-16-13(21)9-22-18(16)23-10-24-19/h2-3,8-11H,4-7H2,1H3,(H,25,26)(H,22,23,24)


Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight 410.862 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.


Dilution Calculator

Calculate the dilution required to prepare a stock solution.

Yi F, Guo J, Dabbagh D, Spear M, He S, Kehn-Hall K, Fontenot J, Yin Y, Bibian M, Park CM, Zheng K, Park HJ, Soloveva V, Gharaibeh D, Retterer C, Zamani R, Pitt ML, Naughton J, Jiang Y, Shang H, Hakami RM, Ling B, Young JAT, Bavari S, Xu X, Feng Y, Wu Y. Discovery of Novel Small-Molecule Inhibitors of LIM Domain Kinase for Inhibiting HIV-1. J Virol. 2017 Jun 9;91(13):e02418-16. doi: 10.1128/JVI.02418-16. PMID: 28381571; PMCID: PMC5469273.


10.0mg / Not available

Additional Information

A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection