Adenosine phosphosulfate

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 463034

CAS#: 485-84-7

Description: Adenosine phosphosulfate is involved in sulfate/sulfite metabolism in humans.


Chemical Structure

img
Adenosine phosphosulfate
CAS# 485-84-7

Theoretical Analysis

MedKoo Cat#: 463034
Name: Adenosine phosphosulfate
CAS#: 485-84-7
Chemical Formula: C10H14N5O10PS
Exact Mass: 427.02
Molecular Weight: 427.281
Elemental Analysis: C, 28.11; H, 3.30; N, 16.39; O, 37.44; P, 7.25; S, 7.50

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Adenosine 5'-phosphosulfate; Adenosine-5'-phosphosulfate; Adenosine 5'-sulfatophosphate; Adenosine-5'-sulfatophosphate; APS; AMPS; Adenylyl sulfate; 5'-Adenylyl sulfate;

IUPAC/Chemical Name: (((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl phosphoric) sulfuric anhydride

InChi Key: IRLPACMLTUPBCL-KQYNXXCUSA-N

InChi Code: InChI=1S/C10H14N5O10PS/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(24-10)1-23-26(18,19)25-27(20,21)22/h2-4,6-7,10,16-17H,1H2,(H,18,19)(H2,11,12,13)(H,20,21,22)/t4-,6-,7-,10-/m1/s1

SMILES Code: Nc1c2ncn([C@@H]3O[C@@H]([C@H]([C@H]3O)O)COP(O)(OS(=O)(O)=O)=O)c2ncn1

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 427.28 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Kim WS, Sun-Hyung J, Oehrle NW, Jez JM, Krishnan HB. Overexpression of ATP sulfurylase improves the sulfur amino acid content, enhances the accumulation of Bowman-Birk protease inhibitor and suppresses the accumulation of the β-subunit of β-conglycinin in soybean seeds. Sci Rep. 2020 Sep 14;10(1):14989. doi: 10.1038/s41598-020-72134-z. PMID: 32929147.

2: Guo H, Chen C, Lee DJ. Manipulating denitrifying sulfide removal of Pseudomonas sp. C27 with nitrite as sole nitrogen source: Shotgun proteomics analysis. Bioresour Technol. 2020 Sep 3;318:124074. doi: 10.1016/j.biortech.2020.124074. Epub ahead of print. PMID: 32916462.

3: Nakamura M, Matsuda K, Morikawa T, Ishizuka K, Inouye S. Efficient conversion to Cypridina luciferin from Cypridina luciferyl sulfate, coupled with enzymatic sulfation of acetic acid. Biochem Biophys Res Commun. 2020 Aug 27;529(3):678-684. doi: 10.1016/j.bbrc.2020.05.167. Epub 2020 Jul 18. PMID: 32736692.

4: Wang P, Li LZ, Qin YL, Liang ZL, Li XT, Yin HQ, Liu LJ, Liu SJ, Jiang CY. Comparative Genomic Analysis Reveals the Metabolism and Evolution of the Thermophilic Archaeal Genus Metallosphaera. Front Microbiol. 2020 Jun 19;11:1192. doi: 10.3389/fmicb.2020.01192. PMID: 32655516; PMCID: PMC7325606.

5: Datta P, Fu L, He W, Koffas MAG, Dordick JS, Linhardt RJ. Expression of enzymes for 3'-phosphoadenosine-5'-phosphosulfate (PAPS) biosynthesis and their preparation for PAPS synthesis and regeneration. Appl Microbiol Biotechnol. 2020 Aug;104(16):7067-7078. doi: 10.1007/s00253-020-10709-6. Epub 2020 Jun 29. PMID: 32601738.

6: Kushkevych I, Abdulina D, Kováč J, Dordević D, Vítězová M, Iutynska G, Rittmann SKR. Adenosine-5'-Phosphosulfate- and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments. Biomolecules. 2020 Jun 17;10(6):921. doi: 10.3390/biom10060921. PMID: 32560561; PMCID: PMC7357011.

7: Cohen A, Hacham Y, Welfe Y, Khatib S, Avice JC, Amir R. Evidence of a significant role of glutathione reductase in the sulfur assimilation pathway. Plant J. 2020 Apr;102(2):246-261. doi: 10.1111/tpj.14621. Epub 2020 Jan 11. PMID: 31782847.

8: Siddiqui MH, Alamri S, Alsubaie QD, Ali HM, Khan MN, Al-Ghamdi A, Ibrahim AA, Alsadon A. Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide. 2020 Jan 1;94:95-107. doi: 10.1016/j.niox.2019.11.002. Epub 2019 Nov 7. PMID: 31707015.

9: Xu Z, Wang M, Xu D, Xia Z. The Arabidopsis APR2 positively regulates cadmium tolerance through glutathione-dependent pathway. Ecotoxicol Environ Saf. 2020 Jan 15;187:109819. doi: 10.1016/j.ecoenv.2019.109819. Epub 2019 Oct 22. PMID: 31654864.

10: Oshiki M, Fukushima T, Kawano S, Kasahara Y, Nakagawa J. Thiocyanate Degradation by a Highly Enriched Culture of the Neutrophilic Halophile Thiohalobacter sp. Strain FOKN1 from Activated Sludge and Genomic Insights into Thiocyanate Metabolism. Microbes Environ. 2019 Dec 27;34(4):402-412. doi: 10.1264/jsme2.ME19068. Epub 2019 Oct 19. PMID: 31631078; PMCID: PMC6934394.

11: Chen FF, Chien CY, Cho CC, Chang YY, Hsu CH. C-terminal Redox Domain of Arabidopsis APR1 is a Non-Canonical Thioredoxin Domain with Glutaredoxin Function. Antioxidants (Basel). 2019 Oct 8;8(10):461. doi: 10.3390/antiox8100461. PMID: 31597378; PMCID: PMC6827007.

12: Eltan M, Yavas Abali Z, Arslan Ates E, Kirkgoz T, Kaygusuz SB, Türkyılmaz A, Bereket A, Turan S, Guran T. Low DHEAS Concentration in a Girl Presenting with Short Stature and Premature Pubarche: A Novel PAPSS2 Gene Mutation. Horm Res Paediatr. 2019;92(4):262-268. doi: 10.1159/000502114. Epub 2019 Aug 28. PMID: 31461705.

13: Mi-Ichi F, Ishikawa T, Tam VK, Deloer S, Hamano S, Hamada T, Yoshida H. Characterization of Entamoeba histolytica adenosine 5'-phosphosulfate (APS) kinase; validation as a target and provision of leads for the development of new drugs against amoebiasis. PLoS Negl Trop Dis. 2019 Aug 19;13(8):e0007633. doi: 10.1371/journal.pntd.0007633. PMID: 31425516; PMCID: PMC6715247.

14: Wójcik-Augustyn A, Johansson AJ, Borowski T. Mechanism of Sulfate Activation Catalyzed by ATP Sulfurylase - Magnesium Inhibits the Activity. Comput Struct Biotechnol J. 2019 Jun 18;17:770-784. doi: 10.1016/j.csbj.2019.06.016. PMID: 31312415; PMCID: PMC6607087.

15: Günal S, Hardman R, Kopriva S, Mueller JW. Sulfation pathways from red to green. J Biol Chem. 2019 Aug 16;294(33):12293-12312. doi: 10.1074/jbc.REV119.007422. Epub 2019 Jul 2. PMID: 31270211; PMCID: PMC6699852.

16: Santos HJ, Hanadate Y, Imai K, Nozaki T. An Entamoeba-Specific Mitosomal Membrane Protein with Potential Association to the Golgi Apparatus. Genes (Basel). 2019 May 13;10(5):367. doi: 10.3390/genes10050367. PMID: 31086122; PMCID: PMC6563013.

17: Jindal A, Thadi A, Shailubhai K. Hepatocellular Carcinoma: Etiology and Current and Future Drugs. J Clin Exp Hepatol. 2019 Mar-Apr;9(2):221-232. doi: 10.1016/j.jceh.2019.01.004. Epub 2019 Jan 25. PMID: 31024205; PMCID: PMC6477125.

18: Telman W, Dietz KJ. Thiol redox-regulation for efficient adjustment of sulfur metabolism in acclimation to abiotic stress. J Exp Bot. 2019 Aug 19;70(16):4223-4236. doi: 10.1093/jxb/erz118. PMID: 30868161.

19: Anoman AD, Flores-Tornero M, Benstein RM, Blau S, Rosa-Téllez S, Bräutigam A, Fernie AR, Muñoz-Bertomeu J, Schilasky S, Meyer AJ, Kopriva S, Segura J, Krueger S, Ros R. Deficiency in the Phosphorylated Pathway of Serine Biosynthesis Perturbs Sulfur Assimilation. Plant Physiol. 2019 May;180(1):153-170. doi: 10.1104/pp.18.01549. Epub 2019 Feb 20. PMID: 30787133; PMCID: PMC6501105.

20: Feldman-Salit A, Veith N, Wirtz M, Hell R, Kummer U. Distribution of control in the sulfur assimilation in Arabidopsis thaliana depends on environmental conditions. New Phytol. 2019 May;222(3):1392-1404. doi: 10.1111/nph.15704. Epub 2019 Mar 2. PMID: 30681147.