M-89 menin inhibitor

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 408087

CAS#: 2363165-42-6 (free base)

Description: M-89 is a highly potent and specific menin inhibitor. M-89 binds to menin with a Kd value of 1.4 nM and effectively engages cellular menin protein at low nanomolar concentrations. M-89 inhibits cell growth in the MV4;11 and MOLM-13 leukemia cell lines carrying MLL fusion with IC50 values of 25 and 55 nM, respectively, and demonstrates >100-fold selectivity over the HL-60 leukemia cell line lacking MLL fusion.

Chemical Structure

M-89 menin inhibitor
CAS# 2363165-42-6 (free base)

Theoretical Analysis

MedKoo Cat#: 408087
Name: M-89 menin inhibitor
CAS#: 2363165-42-6 (free base)
Chemical Formula: C37H47N5O4S
Exact Mass: 657.3349
Molecular Weight: 657.874
Elemental Analysis: C, 67.55; H, 7.20; N, 10.65; O, 9.73; S, 4.87

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Related CAS #: M-89 HCl   2363165-42-6 (free base)    

Synonym: M-89 menin inhibitor; M-89; M 89; M89;

IUPAC/Chemical Name: (1S,2R)-2-((S)-2-methyl-4-(1-((1-(4-(pyridin-4-ylsulfonyl)phenyl)azetidin-3-yl)methyl)piperidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-4-yl)cyclopentyl methylcarbamate


InChi Code: InChI=1S/C37H47N5O4S/c1-38-36(43)46-35-9-5-8-34(35)37(26-40(2)25-28-6-3-4-7-33(28)37)29-16-20-41(21-17-29)22-27-23-42(24-27)30-10-12-31(13-11-30)47(44,45)32-14-18-39-19-15-32/h3-4,6-7,10-15,18-19,27,29,34-35H,5,8-9,16-17,20-26H2,1-2H3,(H,38,43)/t34-,35-,37-/m0/s1

SMILES Code: O=C(NC)O[C@@H]1[C@@H]([C@]2(C3CCN(CC4CN(C5=CC=C(S(=O)(C6=CC=NC=C6)=O)C=C5)C4)CC3)CN(C)CC7=C2C=CC=C7)CCC1

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight 657.874 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.


Dilution Calculator

Calculate the dilution required to prepare a stock solution.

Aguilar A, Zheng K, Xu T, et al. Structure-Based Discovery of M-89 as a Highly Potent Inhibitor of the Menin-Mixed Lineage Leukemia (Menin-MLL) Protein-Protein Interaction. J Med Chem. 2019;62(13):6015–6034. doi:10.1021/acs.jmedchem.9b00021

Additional Information

Inhibition of the menin-mixed lineage leukemia (MLL) protein-protein interaction is a promising new therapeutic strategy for the treatment of acute leukemia carrying MLL fusion (MLL leukemia). We describe herein our structure-based design, synthesis, and evaluation of a new class of small-molecule inhibitors of the menin-MLL interaction (hereafter called menin inhibitors)