NSC145366

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 564779

CAS#: 1052515-37-3

Description: NSC145366 is an inhibitor of Hsp90 activities which targets the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation. NSC145366 increases Hsp90 oligomerization resulting in allosteric inhibition of NTD ATPase activity (IC50=119μM) but does not compete with NTD or CTD-ATP binding.


Chemical Structure

img
NSC145366
CAS# 1052515-37-3

Theoretical Analysis

MedKoo Cat#: 564779
Name: NSC145366
CAS#: 1052515-37-3
Chemical Formula: C37H64Cl2N2O4
Exact Mass: 0.00
Molecular Weight: 671.830
Elemental Analysis: C, 66.15; H, 9.60; Cl, 10.55; N, 4.17; O, 9.53

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: NSC-145366; NSC 145366; NSC145366

IUPAC/Chemical Name: 2,2-Bis(4-[2-Hydroxy-3-(1,1,3,3-tetramethyl-butylamino)-propoxy]-phenyl)propane dihydrochloride

InChi Key: VIFJFGHDOMDVRZ-UHFFFAOYSA-N

InChi Code: InChI=1S/C37H62N2O4.2ClH/c1-33(2,3)25-35(7,8)38-21-29(40)23-42-31-17-13-27(14-18-31)37(11,12)28-15-19-32(20-16-28)43-24-30(41)22-39-36(9,10)26-34(4,5)6;;/h13-20,29-30,38-41H,21-26H2,1-12H3;2*1H

SMILES Code: CC(C1=CC=C(OCC(O)CNC(C)(C)CC(C)(C)C)C=C1)(C2=CC=C(OCC(O)CNC(C)(C)CC(C)(C)C)C=C2)C.[H]Cl.[H]Cl

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 671.83 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Thomas FM, Goode KM, Rajwa B, Bieberich AA, Avramova LV, Hazbun TR, Davisson VJ. A Chemogenomic Screening Platform Used to Identify Chemotypes Perturbing HSP90 Pathways. SLAS Discov. 2017 Jul;22(6):706-719. doi: 10.1177/2472555216687525. Epub 2017 Jan 31. PubMed PMID: 28346089.

2: Goode KM, Petrov DP, Vickman RE, Crist SA, Pascuzzi PE, Ratliff TL, Davisson VJ, Hazbun TR. Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation. Biochim Biophys Acta Gen Subj. 2017 Aug;1861(8):1992-2006. doi: 10.1016/j.bbagen.2017.05.006. Epub 2017 May 8. PubMed PMID: 28495207.