Calcium phosphate, dibasic
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 581323

CAS#: 7757-93-9

Description: Dicalcium phosphate is the calcium phosphate with the formula CaHPO4 and its dihydrate. The "di" prefix in the common name arises because the formation of the HPO42– anion involves the removal of two protons from phosphoric acid, H3PO4. It is also known as dibasic calcium phosphate or calcium monohydrogen phosphate. Dicalcium phosphate is used as a food additive, it is found in some toothpastes as a polishing agent and is a biomaterial.[


Chemical Structure

img
Calcium phosphate, dibasic
CAS# 7757-93-9

Theoretical Analysis

MedKoo Cat#: 581323
Name: Calcium phosphate, dibasic
CAS#: 7757-93-9
Chemical Formula: CaHO4P
Exact Mass: 135.9238
Molecular Weight: 136.06
Elemental Analysis: Ca, 29.46; H, 0.74; O, 47.04; P, 22.77

Price and Availability

Size Price Availability Quantity
100.0g USD 210.0 2 Weeks
500.0g USD 340.0 2 Weeks
2.5kg USD 640.0 2 Weeks
Bulk inquiry

Synonym: Calcium phosphate, dibasic; Calcium hydrogenorthophosphate; Calcium hydrogen phosphate;

IUPAC/Chemical Name: calcium hydrogen phosphate

InChi Key: FUFJGUQYACFECW-UHFFFAOYSA-L

InChi Code: InChI=1S/Ca.H3O4P/c;1-5(2,3)4/h;(H3,1,2,3,4)/q+2;/p-2

SMILES Code: P(O)(=O)([O-])[O-].[Ca+2]

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

Preparing Stock Solutions

The following data is based on the product molecular weight 136.06 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Li M, Zhang J, Wang L, Wang B, Putnis CV. Mechanisms of Modulation of Calcium Phosphate Pathological Mineralization by Mobile and Immobile Small-Molecule Inhibitors. J Phys Chem B. 2018 Feb 8;122(5):1580-1587. doi: 10.1021/acs.jpcb.7b10956. Epub 2018 Jan 27. PubMed PMID: 29346735.

2: Zhang F, Adeola O. True is more additive than apparent total tract digestibility of calcium in limestone and dicalcium phosphate for twenty-kilogram pigs fed semipurified diets. J Anim Sci. 2017 Dec;95(12):5466-5473. doi: 10.2527/jas2017.1849. PubMed PMID: 29293744.

3: Grote S, Kleinebudde P. Roll Compaction/Dry Granulation of Dibasic Calcium Phosphate Anhydrous-Does the Morphology of the Raw Material Influence the Tabletability of Dry Granules? J Pharm Sci. 2018 Apr;107(4):1104-1111. doi: 10.1016/j.xphs.2017.12.003. Epub 2017 Dec 14. PubMed PMID: 29247739.

4: Kunisch E, Maenz S, Knoblich M, Ploeger F, Jandt KD, Bossert J, Kinne RW, Alsalameh S. Short-time pre-washing of brushite-forming calcium phosphate cement improves its in vitro cytocompatibility. Tissue Cell. 2017 Dec;49(6):697-710. doi: 10.1016/j.tice.2017.10.002. Epub 2017 Oct 14. PubMed PMID: 29102397.

5: Gandolfi MG, Zamparini F, Degli Esposti M, Chiellini F, Aparicio C, Fava F, Fabbri P, Taddei P, Prati C. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application. Mater Sci Eng C Mater Biol Appl. 2018 Jan 1;82:163-181. doi: 10.1016/j.msec.2017.08.040. Epub 2017 Aug 12. PubMed PMID: 29025644.

6: Dabiri SMH, Lagazzo A, Barberis F, Shayganpour A, Finocchio E, Pastorino L. New in-situ synthetized hydrogel composite based on alginate and brushite as a potential pH sensitive drug delivery system. Carbohydr Polym. 2017 Dec 1;177:324-333. doi: 10.1016/j.carbpol.2017.08.046. Epub 2017 Aug 14. PubMed PMID: 28962775.

7: Nykamp SG. Dual-energy computed tomography of canine uroliths. Am J Vet Res. 2017 Oct;78(10):1150-1155. doi: 10.2460/ajvr.78.10.1150. PubMed PMID: 28945133.

8: Xu X, Hu X, Ding Z, Chen Y. Effects of copyrolysis of sludge with calcium carbonate and calcium hydrogen phosphate on chemical stability of carbon and release of toxic elements in the resultant biochars. Chemosphere. 2017 Dec;189:76-85. doi: 10.1016/j.chemosphere.2017.09.021. Epub 2017 Sep 8. PubMed PMID: 28930666.

9: Murray KA, Collins MN, O'Sullivan RP, Ren G, Devine DM, Murphy A, Sadło J, O'Sullivan C, McEvoy B, Vrain O, O'Neill C, Insley G. Influence of gamma and electron beam sterilization on the stability of a premixed injectable calcium phosphate cement for trauma indications. J Mech Behav Biomed Mater. 2018 Jan;77:116-124. doi: 10.1016/j.jmbbm.2017.09.002. Epub 2017 Sep 5. PubMed PMID: 28898722.

10: Panahi F, Rabiee SM, Shidpour R. Synergic effect of chitosan and dicalcium phosphate on tricalcium silicate-based nanocomposite for root-end dental application. Mater Sci Eng C Mater Biol Appl. 2017 Nov 1;80:631-641. doi: 10.1016/j.msec.2017.07.012. Epub 2017 Jul 12. PubMed PMID: 28866210.

11: Paul S, Sun CC. The suitability of common compressibility equations for characterizing plasticity of diverse powders. Int J Pharm. 2017 Oct 30;532(1):124-130. doi: 10.1016/j.ijpharm.2017.08.096. Epub 2017 Aug 24. PubMed PMID: 28844895.

12: Reynolds GK, Campbell JI, Roberts RJ. A compressibility based model for predicting the tensile strength of directly compressed pharmaceutical powder mixtures. Int J Pharm. 2017 Oct 5;531(1):215-224. doi: 10.1016/j.ijpharm.2017.08.075. Epub 2017 Aug 18. PubMed PMID: 28823886.

13: Kawakami M, Kitada R, Kurita T, Tokumura T. A Method for Decreasing the Amount of the Drug Remaining on the Surfaces of the Mortar and Pestle after Grinding Small Amount of Tablets. Yakugaku Zasshi. 2017;137(8):1017-1025. doi: 10.1248/yakushi.17-00041. Japanese. PubMed PMID: 28768941.

14: Oryan A, Alidadi S, Bigham-Sadegh A. Dicalcium Phosphate Anhydrous: An Appropriate Bioceramic in Regeneration of Critical-Sized Radial Bone Defects in Rats. Calcif Tissue Int. 2017 Nov;101(5):530-544. doi: 10.1007/s00223-017-0309-9. Epub 2017 Jul 31. PubMed PMID: 28761974.

15: Ajaxon I, Acciaioli A, Lionello G, Ginebra MP, Öhman-Mägi C, Baleani M, Persson C. Elastic properties and strain-to-crack-initiation of calcium phosphate bone cements: Revelations of a high-resolution measurement technique. J Mech Behav Biomed Mater. 2017 Oct;74:428-437. doi: 10.1016/j.jmbbm.2017.06.023. Epub 2017 Jun 21. PubMed PMID: 28735216.

16: Sugiura Y, Tsuru K, Ishikawa K. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate". J Mater Sci Mater Med. 2017 Aug;28(8):122. doi: 10.1007/s10856-017-5937-0. Epub 2017 Jul 8. PubMed PMID: 28689353.

17: Gallob J, Sufi F, Amini P, Siddiqi M, Mason S. A randomised exploratory clinical evaluation of dentifrices used as controls in dentinal hypersensitivity studies. J Dent. 2017 Sep;64:80-87. doi: 10.1016/j.jdent.2017.06.009. Epub 2017 Jun 23. PubMed PMID: 28652142.

18: Bungartz M, Kunisch E, Maenz S, Horbert V, Xin L, Gunnella F, Mika J, Borowski J, Bischoff S, Schubert H, Sachse A, Illerhaus B, Günster J, Bossert J, Jandt KD, Plöger F, Kinne RW, Brinkmann O. GDF5 significantly augments the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine J. 2017 Nov;17(11):1685-1698. doi: 10.1016/j.spinee.2017.06.007. Epub 2017 Jun 19. PubMed PMID: 28642196.

19: Gunnella F, Kunisch E, Bungartz M, Maenz S, Horbert V, Xin L, Mika J, Borowski J, Bischoff S, Schubert H, Hortschansky P, Sachse A, Illerhaus B, Günster J, Bossert J, Jandt KD, Plöger F, Kinne RW, Brinkmann O. Low-dose BMP-2 is sufficient to enhance the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine J. 2017 Nov;17(11):1699-1711. doi: 10.1016/j.spinee.2017.06.005. Epub 2017 Jun 12. PubMed PMID: 28619686.

20: Cama G, Nkhwa S, Gharibi B, Lagazzo A, Cabella R, Carbone C, Dubruel P, Haugen H, Di Silvio L, Deb S. The role of new zinc incorporated monetite cements on osteogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:485-494. doi: 10.1016/j.msec.2017.04.086. Epub 2017 Apr 20. PubMed PMID: 28576013.