WARNING: This product is for research use only, not for human or veterinary use.
MedKoo CAT#: 461382
CAS#: 88283-41-4
Description: Pyrifenox is an azole inhibitor and pesticide.
MedKoo Cat#: 461382
Name: Pyrifenox
CAS#: 88283-41-4
Chemical Formula: C14H12Cl2N2O
Exact Mass: 294.0327
Molecular Weight: 295.16
Elemental Analysis: C, 56.97; H, 4.10; Cl, 24.02; N, 9.49; O, 5.42
Synonym: Pyrifenox; Dorado; Ro 15-1297; Ro-15-1297; Ro15-1297;
IUPAC/Chemical Name: (Z)-1-(2,4-dichlorophenyl)-2-(pyridin-3-yl)ethan-1-one O-methyl oxime
InChi Key: CKPCAYZTYMHQEX-JXAWBTAJSA-N
InChi Code: InChI=1S/C14H12Cl2N2O/c1-19-18-14(7-10-3-2-6-17-9-10)12-5-4-11(15)8-13(12)16/h2-6,8-9H,7H2,1H3/b18-14-
SMILES Code: ClC1=CC=C(/C(CC2=CC=CN=C2)=N\OC)C(Cl)=C1
Appearance: Solid powder
Purity: >98% (or refer to the Certificate of Analysis)
Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility: Soluble in DMSO
Shelf Life: >3 years if stored properly
Drug Formulation: This drug may be formulated in DMSO
Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code: 2934.99.03.00
The following data is based on the product molecular weight 295.16 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.
Concentration / Solvent Volume / Mass | 1 mg | 5 mg | 10 mg |
---|---|---|---|
1 mM | 1.15 mL | 5.76 mL | 11.51 mL |
5 mM | 0.23 mL | 1.15 mL | 2.3 mL |
10 mM | 0.12 mL | 0.58 mL | 1.15 mL |
50 mM | 0.02 mL | 0.12 mL | 0.23 mL |
1: Deweer C, Siah A, Sahmer K, Halama P. Evolution of Mycosphaerella graminicola resistance to epoxiconazole and pyrifenox in northern France. Commun Agric Appl Biol Sci. 2012;77(3):109-15. PubMed PMID: 23878964.
2: Boulaid M, Aguilera A, Camacho F, Soussi M, Valverde A. Effect of household processing and unit-to-unit variability of pyrifenox, pyridaben, and tralomethrin residues in tomatoes. J Agric Food Chem. 2005 May 18;53(10):4054-8. PubMed PMID: 15884838.
3: Flores P, Lacasa A, Fernández P, Hellín P, Fenoll J. Impact of biofumigation with solarization on degradation of pesticides and heavy metal accumulation. J Environ Sci Health B. 2008 Aug;43(6):513-8. doi: 10.1080/03601230802174698. PubMed PMID: 18665988.
4: Kunz S, Deising H, Mendgen K. Acquisition of Resistance to Sterol Demethylation Inhibitors by Populations of Venturia inaequalis. Phytopathology. 1997 Dec;87(12):1272-8. doi: 10.1094/PHYTO.1997.87.12.1272. PubMed PMID: 18945029.
5: Hassold E, Backhaus T. Chronic toxicity of five structurally diverse demethylase-inhibiting fungicides to the crustacean Daphnia magna: a comparative assessment. Environ Toxicol Chem. 2009 Jun;28(6):1218-26. doi: 10.1897/08-339.1. PubMed PMID: 19132812.
6: Hernández-Borges J, Cifuentes A, García-Montelongo FJ, Rodríguez-Delgado MA. Combining solid-phase microextraction and on-line preconcentration-capillary electrophoresis for sensitive analysis of pesticides in foods. Electrophoresis. 2005 Feb;26(4-5):980-9. PubMed PMID: 15714540.
7: Ramoutar D, Cowles RS, Requintina E Jr, Alm SR. Synergism between demethylation inhibitor fungicides or gibberellin inhibitor plant growth regulators and bifenthrin in a pyrethroid-resistant population of Listronotus maculicollis (Coleoptera: Curculionidae). J Econ Entomol. 2010 Oct;103(5):1810-4. Erratum in: J Econ Entomol. 2011 Apr;104(2):v. PubMed PMID: 21061984.
8: Hassold E, Backhaus T. The predictability of mixture toxicity of demethylase inhibiting fungicides to Daphnia magna depends on life-cycle parameters. Aquat Toxicol. 2014 Jul;152:205-14. doi: 10.1016/j.aquatox.2014.04.009. Epub 2014 Apr 15. PubMed PMID: 24792151.
9: Juan-García A, Font G, Picó Y. Quantitative analysis of six pesticides in fruits by capillary electrophoresis-electrospray-mass spectrometry. Electrophoresis. 2005 Apr;26(7-8):1550-61. PubMed PMID: 15759305.
10: Soler C, Mañes J, Picó Y. Liquid chromatography-electrospray quadrupole ion-trap mass spectrometry of nine pesticides in fruits. J Chromatogr A. 2004 Sep 3;1048(1):41-9. PubMed PMID: 15453417.
11: Pascal S, Taton M, Rahier A. Plant sterol biosynthesis: identification of a NADPH dependent sterone reductase involved in sterol-4 demethylation. Arch Biochem Biophys. 1994 Jul;312(1):260-71. PubMed PMID: 8031136.
12: Asensio-Ramos M, Hernández-Borges J, Ravelo-Pérez LM, Rodríguez-Delgado MA. Simultaneous determination of seven pesticides in waters using multi-walled carbon nanotube SPE and NACE. Electrophoresis. 2008 Nov;29(21):4412-21. doi: 10.1002/elps.200800254. PubMed PMID: 18956435.
13: Hernández-Borges J, Rodríguez-Delgado MA, García-Montelongo FJ, Cifuentes A. Highly sensitive analysis of multiple pesticides in foods combining solid-phase microextraction, capillary electrophoresis-mass spectrometry, and chemometrics. Electrophoresis. 2004 Jul;25(13):2065-76. PubMed PMID: 15237407.
14: Soler C, James KJ, Picó Y. Capabilities of different liquid chromatography tandem mass spectrometry systems in determining pesticide residues in food. Application to estimate their daily intake. J Chromatogr A. 2007 Jul 20;1157(1-2):73-84. Epub 2007 Apr 13. PubMed PMID: 17466998.