Manoyl oxide

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 598174

CAS#: 596-84-9

Description: Manoyl oxide is a proposed intermediate in the biosynthesis of forskolin and other medically important labdane-type terpenoids.


Chemical Structure

img
Manoyl oxide
CAS# 596-84-9

Theoretical Analysis

MedKoo Cat#: 598174
Name: Manoyl oxide
CAS#: 596-84-9
Chemical Formula: C20H34O
Exact Mass: 290.261
Molecular Weight: 290.49
Elemental Analysis: C, 82.69; H, 11.80; O, 5.51

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Manoyl oxide; Manoyl oxide; Manoyl;

IUPAC/Chemical Name: (3R,4aR,6aS,10aS,10bR)-3,4a,7,7,10a-pentamethyl-3-vinyldodecahydro-1H-benzo[f]chromene

InChi Key: IGGWKHQYMAJOHK-HHUCQEJWSA-N

InChi Code: InChI=1S/C20H34O/c1-7-18(4)13-9-16-19(5)12-8-11-17(2,3)15(19)10-14-20(16,6)21-18/h7,15-16H,1,8-14H2,2-6H3/t15-,16+,18-,19-,20+/m0/s1

SMILES Code: C[C@]12CCCC(C)(C)[C@]1([H])CC[C@]3(C)[C@]2([H])CC[C@](C)(C=C)O3

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

Preparing Stock Solutions

The following data is based on the product molecular weight 290.49 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Nielsen MT, Ranberg JA, Christensen U, Christensen HB, Harrison SJ, Olsen CE, Hamberger B, Møller BL, Nørholm MH. Microbial Synthesis of the Forskolin Precursor Manoyl Oxide in an Enantiomerically Pure Form. Appl Environ Microbiol. 2014 Dec;80(23):7258-65. doi: 10.1128/AEM.02301-14. Epub 2014 Sep 19. PubMed PMID: 25239892; PubMed Central PMCID: PMC4249197.

2: Pateraki I, Andersen-Ranberg J, Hamberger B, Heskes AM, Martens HJ, Zerbe P, Bach SS, Møller BL, Bohlmann J, Hamberger B. Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in specialized root cork cells in Coleus forskohlii. Plant Physiol. 2014 Mar;164(3):1222-36. doi: 10.1104/pp.113.228429. Epub 2014 Jan 30. PubMed PMID: 24481136; PubMed Central PMCID: PMC3938615.

3: Englund E, Andersen-Ranberg J, Miao R, Hamberger B, Lindberg P. Metabolic Engineering of Synechocystis sp. PCC 6803 for Production of the Plant Diterpenoid Manoyl Oxide. ACS Synth Biol. 2015 Dec 18;4(12):1270-8. doi: 10.1021/acssynbio.5b00070. Epub 2015 Jul 13. PubMed PMID: 26133196; PubMed Central PMCID: PMC4685428.

4: Ignea C, Ioannou E, Georgantea P, Trikka FA, Athanasakoglou A, Loupassaki S, Roussis V, Makris AM, Kampranis SC. Production of the forskolin precursor 11β-hydroxy-manoyl oxide in yeast using surrogate enzymatic activities. Microb Cell Fact. 2016 Feb 26;15:46. doi: 10.1186/s12934-016-0440-8. PubMed PMID: 26920948; PubMed Central PMCID: PMC4769550.

5: da Silva WM, Silveira ER, Pessoa OD. Acylated manoyl oxide diterpenes of Stemodia trifoliata. Magn Reson Chem. 2010 Jun;48(6):486-9. doi: 10.1002/mrc.2597. PubMed PMID: 20474028.

6: Ybarra MI, Popich S, Borkosky SA, Asakawa Y, Bardón A. Manoyl oxide diterpenoids from Grindelia scorzonerifolia. J Nat Prod. 2005 Apr;68(4):554-8. PubMed PMID: 15844947.

7: Kalpoutzakis E, Aligiannis N, Mitaku S, Chinou L, Charvala C, Skaltsounis AL. New hemisynthetic manoyl oxide derivatives with antimicrobial activity. Chem Pharm Bull (Tokyo). 2001 Jul;49(7):814-7. PubMed PMID: 11456084.

8: Angelopoulou D, Demetzos C, Dimas C, Perdetzoglou D, Loukis A. Essential oils and hexane extracts from leaves and fruits of Cistus monspeliensis. Cytotoxic activity of ent-13-epi-manoyl oxide and its isomers. Planta Med. 2001 Mar;67(2):168-71. PubMed PMID: 11301869.

9: Demetzos C, Kolocouris A, Anastasaki T. A simple and rapid method for the differentiation of C-13 manoyl oxide epimers in biologically important samples using GC-MS analysis supported with NMR spectroscopy and computational chemistry results. Bioorg Med Chem Lett. 2002 Dec 16;12(24):3605-9. PubMed PMID: 12443786.

10: Fraga BM, González P, Guillermo R, Hernández MG. Microbiological transformation of manoyl oxide derivatives by Mucor plumbeus. J Nat Prod. 1998 Oct;61(10):1237-41. PubMed PMID: 9784159.

11: Kim MJ, Jin J, Zheng J, Wong L, Chua NH, Jang IC. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production. Plant Physiol. 2015 Dec;169(4):2462-80. doi: 10.1104/pp.15.01353. Epub 2015 Oct 5. PubMed PMID: 26438788; PubMed Central PMCID: PMC4677913.

12: Matsingou C, Demetzos C. Effect of the nature of the 3beta-substitution in manoyl oxides on the thermotropic behavior of DPPC lipid bilayer and on DPPC liposomes. J Liposome Res. 2007;17(2):89-105. PubMed PMID: 17613699.

13: Mafu S, Potter KC, Hillwig ML, Schulte S, Criswell J, Peters RJ. Efficient heterocyclisation by (di)terpene synthases. Chem Commun (Camb). 2015 Sep 11;51(70):13485-7. doi: 10.1039/c5cc05754j. PubMed PMID: 26214384; PubMed Central PMCID: PMC4543578.

14: Sura MB, Ankireddy M, Gowri Ponnapalli M. Biotransformation of agallochaexcoerin A by Aspergillus flavus. Nat Prod Res. 2015;29(9):838-41. doi: 10.1080/14786419.2014.989845. Epub 2014 Dec 17. PubMed PMID: 25515683.

15: Zerbe P, Chiang A, Dullat H, O'Neil-Johnson M, Starks C, Hamberger B, Bohlmann J. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. Plant J. 2014 Sep;79(6):914-27. doi: 10.1111/tpj.12589. Epub 2014 Jul 23. PubMed PMID: 24990389.

16: García-Grandos A, Jiménez MB, Martínez A, Parra A, Rivas F, Arias JM. Chemical-microbiological synthesis of ent-13-epi-manoyl oxides with biological activities. Phytochemistry. 1994 Oct;37(3):741-7. PubMed PMID: 7765688.

17: Ebrahimi SN, Farimani MM, Mirzania F, Soltanipoor MA, De Mieri M, Hamburger M. Manoyloxide Sesterterpenoids from Salvia mirzayanii. J Nat Prod. 2014 Apr 25;77(4):848-54. doi: 10.1021/np400948n. Epub 2014 Apr 1. PubMed PMID: 24689905.

18: de las Heras B, Villar A, Vivas JM, Hoult JR. Novel anti-inflammatory plant labdanes: comparison of in vitro properties with aspirin and indomethacin. Agents Actions. 1994 Mar;41(1-2):114-7. PubMed PMID: 8079815.

19: Demetzos C, Katerinopoulos H, Kouvarakis A, Stratigakis N, Loukis A, Ekonomakis C, Spiliotis V, Tsaknis J. Composition and antimicrobial activity of the essential oil of Cistus creticus subsp. eriocephalus. Planta Med. 1997 Oct;63(5):477-9. PubMed PMID: 9342956.

20: Nejia H, Séverine C, Jalloul B, Mehrez R, Stéphane CJ. Extraction of essential oil from Cupressus sempervirens: comparison of global yields, chemical composition and antioxidant activity obtained by hydrodistillation and supercritical extraction. Nat Prod Res. 2013;27(19):1795-9. doi: 10.1080/14786419.2012.755680. Epub 2013 Jan 14. PubMed PMID: 23316864.