Acetyl tetrapeptide-2

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 598068

CAS#: 757942-88-4

Description: Acetyl tetrapeptide-2 is most commonly used as a skin conditioner, by soothing and nourishing the skin through similar mechanisms as other peptides. It is done by compensating for hormone loss in the skin, especially collagen, providing somewhat of a plumping effect to the skin.


Chemical Structure

img
Acetyl tetrapeptide-2
CAS# 757942-88-4

Theoretical Analysis

MedKoo Cat#: 598068
Name: Acetyl tetrapeptide-2
CAS#: 757942-88-4
Chemical Formula: C26H39N5O9
Exact Mass: 565.27
Molecular Weight: 565.620
Elemental Analysis: C, 55.21; H, 6.95; N, 12.38; O, 25.46

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Acetyl tetrapeptide-2; Peptigravity; Thymulen 4;

IUPAC/Chemical Name: (2S,5S,8S,11S)-11-(4-aminobutyl)-8-(carboxymethyl)-2-(4-hydroxybenzyl)-5-isopropyl-4,7,10,13-tetraoxo-3,6,9,12-tetraazatetradecanoic acid

InChi Key: ITIMHIATVYROGF-XWUOBKMESA-N

InChi Code: InChI=1S/C26H39N5O9/c1-14(2)22(25(38)30-20(26(39)40)12-16-7-9-17(33)10-8-16)31-24(37)19(13-21(34)35)29-23(36)18(28-15(3)32)6-4-5-11-27/h7-10,14,18-20,22,33H,4-6,11-13,27H2,1-3H3,(H,28,32)(H,29,36)(H,30,38)(H,31,37)(H,34,35)(H,39,40)/t18-,19-,20-,22-/m0/s1

SMILES Code: OC1=CC=C(C=C1)C[C@@H](C(O)=O)NC([C@H](C(C)C)NC([C@H](CC(O)=O)NC([C@H](CCCCN)NC(C)=O)=O)=O)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 565.62 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Raters M, Elsinghorst PW, Goetze S, Dingel A, Matissek R. Determination of 2-Methylimidazole, 4-Methylimidazole, and 2-Acetyl-4-(1,2,3,4-tetrahydroxybutyl)imidazole in Licorice Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry Stable-Isotope Dilution Analysis. J Agric Food Chem. 2015 Jul 1;63(25):5930-4. doi: 10.1021/acs.jafc.5b01493. Epub 2015 Jun 22. PubMed PMID: 26073294.

2: Rodriguez AA, Cedillo I, Mowery BP, Gaus HJ, Krishnamoorthy SS, McPherson AK. Formation of the N(2)-acetyl-2,6-diaminopurine oligonucleotide impurity caused by acetyl capping. Bioorg Med Chem Lett. 2014 Aug 1;24(15):3243-6. doi: 10.1016/j.bmcl.2014.06.025. Epub 2014 Jun 18. PubMed PMID: 24980055.

3: Dierkes G, Weiss T, Modick H, Käfferlein HU, Brüning T, Koch HM. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users. Int J Hyg Environ Health. 2014 Apr-May;217(4-5):592-9. doi: 10.1016/j.ijheh.2013.11.005. Epub 2013 Dec 6. PubMed PMID: 24370547.

4: Deblander J, Van Aeken S, Adams A, De Kimpe N, Abbaspour Tehrani K. New short and general synthesis of three key Maillard flavour compounds: 2-Acetyl-1-pyrroline, 6-acetyl-1,2,3,4-tetrahydropyridine and 5-acetyl-2,3-dihydro-4H-1,4-thiazine. Food Chem. 2015 Feb 1;168:327-31. doi: 10.1016/j.foodchem.2014.07.088. Epub 2014 Jul 23. PubMed PMID: 25172717.

5: Chinea K, Vera W, Banerjee AK. Synthesis of 2-acetyl-1,4-dimethoxynaphthalene, a potential intermediate for disubstituted naphtho[2,3,c]pyran-5,10-dione. Nat Prod Commun. 2014 Feb;9(2):217-8. PubMed PMID: 24689294.

6: Deshmukh Y, Khare P, Patra DD, Nadaf AB. HS-SPME-GC-FID method for detection and quantification of Bacillus cereus ATCC 10702 mediated 2-acetyl-1-pyrroline. Biotechnol Prog. 2014 Nov-Dec;30(6):1356-63. doi: 10.1002/btpr.1989. Epub 2014 Sep 29. PubMed PMID: 25196224.

7: Fang MC, Cadwallader KR. Stabilization of the potent odorant 2-acetyl-1-pyrroline and structural analogues by complexation with zinc halides. J Agric Food Chem. 2014 Sep 3;62(35):8808-13. doi: 10.1021/jf5020186. Epub 2014 Aug 22. PubMed PMID: 25147956.

8: Ściskalska M, Śliwińska-Mossoń M, Podawacz M, Sajewicz W, Milnerowicz H. Mechanisms of interaction of the N-acetyl-p-aminophenol metabolites in terms of nephrotoxicity. Drug Chem Toxicol. 2015 Apr;38(2):121-5. doi: 10.3109/01480545.2014.928722. Epub 2014 Jun 24. Review. PubMed PMID: 24958513.

9: Triggiani M, Goldman DW, Chilton FH. Biological effects of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil. Biochim Biophys Acta. 1991 Jun 19;1084(1):41-7. PubMed PMID: 1647203.

10: Ning J, Kong F. Syntheses and reactions of 5-O-acetyl-1,2-anhydro-3-O-benzyl-alpha-D-ribofuranose and beta-D-lyxofuranose, 5-O-acetyl-1,2-anhydro-3,6-di-O-benzyl- and 1,2-anhydro-5,6-di-O-benzoyl-3-O-benzyl-beta-D-mannofuranose, and 6-O-acetyl-1,2-anhydro-3,4-di-O-benzyl-alpha-D-glucopyranose and -beta-D-talopyranose. Carbohydr Res. 2001 Jan 30;330(2):165-75. PubMed PMID: 11217969.

11: Triggiani M, D'Souza DM, Chilton FH. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil. J Biol Chem. 1991 Apr 15;266(11):6928-35. PubMed PMID: 2016306.

12: Zhang Y, Jiang H, Hutson P. Stability of acetyl-1-carnitine in 5% dextrose using a high-performance liquid chromatography-mass spectrometry times 2 method. Int J Pharm Compd. 2012 Mar-Apr;16(2):170-3. PubMed PMID: 23050330.

13: Puchart V, Biely P. Redistribution of acetyl groups on the non-reducing end xylopyranosyl residues and their removal by xylan deacetylases. Appl Microbiol Biotechnol. 2015 May;99(9):3865-73. doi: 10.1007/s00253-014-6160-2. Epub 2014 Nov 8. PubMed PMID: 25381188.

14: Chen Y, Zhang Y, Siewers V, Nielsen J. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase. FEMS Yeast Res. 2015 May;15(3). pii: fov015. doi: 10.1093/femsyr/fov015. Epub 2015 Apr 6. PubMed PMID: 25852051.

15: Hu N, Green SA. Acetyl Radical Generation in Cigarette Smoke: Quantification and Simulations. Atmos Environ (1994). 2014 Oct 1;95:142-150. PubMed PMID: 25253993; PubMed Central PMCID: PMC4170066.

16: Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014 Dec 11;2:23. doi: 10.1186/2049-3002-2-23. eCollection 2014. PubMed PMID: 25671109; PubMed Central PMCID: PMC4322440.

17: Galdieri L, Vancura A. Acetyl-CoA carboxylase regulates global histone acetylation. J Biol Chem. 2012 Jul 6;287(28):23865-76. doi: 10.1074/jbc.M112.380519. Epub 2012 May 11. PubMed PMID: 22580297; PubMed Central PMCID: PMC3390662.

18: Kool MM, Schols HA, Wagenknecht M, Hinz SW, Moerschbacher BM, Gruppen H. Characterization of an acetyl esterase from Myceliophthora thermophila C1 able to deacetylate xanthan. Carbohydr Polym. 2014 Oct 13;111:222-9. doi: 10.1016/j.carbpol.2014.04.064. Epub 2014 Apr 26. PubMed PMID: 25037346.

19: Tsuchiya Y, Pham U, Hu W, Ohnuma S, Gout I. Changes in acetyl CoA levels during the early embryonic development of Xenopus laevis. PLoS One. 2014 May 15;9(5):e97693. doi: 10.1371/journal.pone.0097693. eCollection 2014. PubMed PMID: 24831956; PubMed Central PMCID: PMC4022644.

20: Singh K, Mishra VK, Nath K, Rashid N, Parveen F. Computational Analysis of N-acetyl transferase in Tribolium castaneum. Bioinformation. 2013 Aug 7;9(14):715-7. doi: 10.6026/97320630009715. eCollection 2013. PubMed PMID: 23976826; PubMed Central PMCID: PMC3746093.