Acetyl decapeptide-3

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 598026

CAS#: 935288-50-9

Description: Acetyl decapeptide-3 is a peptide that stimulates collagen and elastin to increase skin elasticity, increase cell growth and improve healing and repair.


Chemical Structure

img
Acetyl decapeptide-3
CAS# 935288-50-9

Theoretical Analysis

MedKoo Cat#: 598026
Name: Acetyl decapeptide-3
CAS#: 935288-50-9
Chemical Formula: C68H95N19O17
Exact Mass: 1,449.72
Molecular Weight: 1,450.620
Elemental Analysis: C, 56.30; H, 6.60; N, 18.35; O, 18.75

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Acetyl decapeptide-3; Rejuline; Ac-tyr-arg-ser-arg-lys-tyr-thr-ser-trp-tyr-NH2;

IUPAC/Chemical Name: (S)-N-((2S,5S,8S,11S,14S)-5-((1H-indol-3-yl)methyl)-1-amino-2-(4-hydroxybenzyl)-11-((R)-1-hydroxyethyl)-8-(hydroxymethyl)-15-(4-hydroxyphenyl)-1,4,7,10,13-pentaoxo-3,6,9,12-tetraazapentadecan-14-yl)-6-amino-2-((2S,5S,8S,11S)-2,8-bis(3-guanidinopropyl)-11-(4-hydroxybenzyl)-5-(hydroxymethyl)-4,7,10,13-tetraoxo-3,6,9,12-tetraazatetradecanamido)hexanamide

InChi Key: CGPSWQBETUSORI-MTUNXJOQSA-N

InChi Code: InChI=1S/C68H95N19O17/c1-36(90)56(66(104)86-55(35-89)65(103)84-53(32-41-33-77-46-10-4-3-9-45(41)46)62(100)82-50(57(70)95)29-38-14-20-42(92)21-15-38)87-63(101)52(31-40-18-24-44(94)25-19-40)83-59(97)47(11-5-6-26-69)79-58(96)48(12-7-27-75-67(71)72)81-64(102)54(34-88)85-60(98)49(13-8-28-76-68(73)74)80-61(99)51(78-37(2)91)30-39-16-22-43(93)23-17-39/h3-4,9-10,14-25,33,36,47-56,77,88-90,92-94H,5-8,11-13,26-32,34-35,69H2,1-2H3,(H2,70,95)(H,78,91)(H,79,96)(H,80,99)(H,81,102)(H,82,100)(H,83,97)(H,84,103)(H,85,98)(H,86,104)(H,87,101)(H4,71,72,75)(H4,73,74,76)/t36-,47+,48+,49+,50+,51+,52+,53+,54+,55+,56+/m1/s1

SMILES Code: OC1=CC=C(C=C1)C[C@@H](C(N)=O)NC([C@H](CC2=CNC3=C2C=CC=C3)NC([C@H](CO)NC([C@H]([C@H](O)C)NC([C@H](CC4=CC=C(O)C=C4)NC([C@H](CCCCN)NC([C@H](CCCNC(N)=N)NC([C@H](CO)NC([C@H](CCCNC(N)=N)NC([C@H](CC5=CC=C(O)C=C5)NC(C)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 1,450.62 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Ranade DS, Bapat AM, Ramteke SN, Joshi BN, Roussel P, Tomas A, Deschamps P, Kulkarni PP. Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity. Eur J Med Chem. 2016 Oct 4;121:803-809. doi: 10.1016/j.ejmech.2015.07.028. Epub 2015 Jul 23. PubMed PMID: 26232353.

2: Raters M, Elsinghorst PW, Goetze S, Dingel A, Matissek R. Determination of 2-Methylimidazole, 4-Methylimidazole, and 2-Acetyl-4-(1,2,3,4-tetrahydroxybutyl)imidazole in Licorice Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry Stable-Isotope Dilution Analysis. J Agric Food Chem. 2015 Jul 1;63(25):5930-4. doi: 10.1021/acs.jafc.5b01493. Epub 2015 Jun 22. PubMed PMID: 26073294.

3: Deblander J, Van Aeken S, Adams A, De Kimpe N, Abbaspour Tehrani K. New short and general synthesis of three key Maillard flavour compounds: 2-Acetyl-1-pyrroline, 6-acetyl-1,2,3,4-tetrahydropyridine and 5-acetyl-2,3-dihydro-4H-1,4-thiazine. Food Chem. 2015 Feb 1;168:327-31. doi: 10.1016/j.foodchem.2014.07.088. Epub 2014 Jul 23. PubMed PMID: 25172717.

4: Puchart V, Biely P. Redistribution of acetyl groups on the non-reducing end xylopyranosyl residues and their removal by xylan deacetylases. Appl Microbiol Biotechnol. 2015 May;99(9):3865-73. doi: 10.1007/s00253-014-6160-2. Epub 2014 Nov 8. PubMed PMID: 25381188.

5: Ściskalska M, Śliwińska-Mossoń M, Podawacz M, Sajewicz W, Milnerowicz H. Mechanisms of interaction of the N-acetyl-p-aminophenol metabolites in terms of nephrotoxicity. Drug Chem Toxicol. 2015 Apr;38(2):121-5. doi: 10.3109/01480545.2014.928722. Epub 2014 Jun 24. Review. PubMed PMID: 24958513.

6: Chen Y, Zhang Y, Siewers V, Nielsen J. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase. FEMS Yeast Res. 2015 May;15(3). pii: fov015. doi: 10.1093/femsyr/fov015. Epub 2015 Apr 6. PubMed PMID: 25852051.

7: Hu N, Green SA. Acetyl Radical Generation in Cigarette Smoke: Quantification and Simulations. Atmos Environ (1994). 2014 Oct 1;95:142-150. PubMed PMID: 25253993; PubMed Central PMCID: PMC4170066.

8: Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014 Dec 11;2:23. doi: 10.1186/2049-3002-2-23. eCollection 2014. PubMed PMID: 25671109; PubMed Central PMCID: PMC4322440.

9: Galdieri L, Vancura A. Acetyl-CoA carboxylase regulates global histone acetylation. J Biol Chem. 2012 Jul 6;287(28):23865-76. doi: 10.1074/jbc.M112.380519. Epub 2012 May 11. PubMed PMID: 22580297; PubMed Central PMCID: PMC3390662.

10: Kool MM, Schols HA, Wagenknecht M, Hinz SW, Moerschbacher BM, Gruppen H. Characterization of an acetyl esterase from Myceliophthora thermophila C1 able to deacetylate xanthan. Carbohydr Polym. 2014 Oct 13;111:222-9. doi: 10.1016/j.carbpol.2014.04.064. Epub 2014 Apr 26. PubMed PMID: 25037346.

11: Tsuchiya Y, Pham U, Hu W, Ohnuma S, Gout I. Changes in acetyl CoA levels during the early embryonic development of Xenopus laevis. PLoS One. 2014 May 15;9(5):e97693. doi: 10.1371/journal.pone.0097693. eCollection 2014. PubMed PMID: 24831956; PubMed Central PMCID: PMC4022644.

12: Ning J, Kong F. Syntheses and reactions of 5-O-acetyl-1,2-anhydro-3-O-benzyl-alpha-D-ribofuranose and beta-D-lyxofuranose, 5-O-acetyl-1,2-anhydro-3,6-di-O-benzyl- and 1,2-anhydro-5,6-di-O-benzoyl-3-O-benzyl-beta-D-mannofuranose, and 6-O-acetyl-1,2-anhydro-3,4-di-O-benzyl-alpha-D-glucopyranose and -beta-D-talopyranose. Carbohydr Res. 2001 Jan 30;330(2):165-75. PubMed PMID: 11217969.

13: Wang W, Kong F. A highly convergent and effective synthesis of the phytoalexin elicitor hexasaccharide. Carbohydr Res. 1999 Jan 31;315(1-2):117-27. PubMed PMID: 10385974.

14: Jeoung JH, Goetzl S, Hennig SE, Fesseler J, Wörmann C, Dendra J, Dobbek H. The extended reductive acetyl-CoA pathway: ATPases in metal cluster maturation and reductive activation. Biol Chem. 2014 May;395(5):545-58. doi: 10.1515/hsz-2013-0290. Review. PubMed PMID: 24477517.

15: Chinea K, Vera W, Banerjee AK. Synthesis of 2-acetyl-1,4-dimethoxynaphthalene, a potential intermediate for disubstituted naphtho[2,3,c]pyran-5,10-dione. Nat Prod Commun. 2014 Feb;9(2):217-8. PubMed PMID: 24689294.

16: Biely P, Cziszárová M, Agger JW, Li XL, Puchart V, Vršanská M, Eijsink VG, Westereng B. Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose. Biochim Biophys Acta. 2014 Jan;1840(1):516-25. doi: 10.1016/j.bbagen.2013.10.008. Epub 2013 Oct 12. PubMed PMID: 24128930.

17: Xin XL, Huo H, Chen L, Li J, Sun JH, Zheng PW, Sun Y, Wu ZM, Xiong YH. Microbial transformation of acetyl-11-keto-boswellic acid by Cunninghamella elegans. J Asian Nat Prod Res. 2013 Nov;15(11):1173-8. doi: 10.1080/10286020.2013.837455. Epub 2013 Oct 29. PubMed PMID: 24168329.

18: Singh K, Mishra VK, Nath K, Rashid N, Parveen F. Computational Analysis of N-acetyl transferase in Tribolium castaneum. Bioinformation. 2013 Aug 7;9(14):715-7. doi: 10.6026/97320630009715. eCollection 2013. PubMed PMID: 23976826; PubMed Central PMCID: PMC3746093.

19: Broussard TC, Price AE, Laborde SM, Waldrop GL. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase. Biochemistry. 2013 May 14;52(19):3346-57. doi: 10.1021/bi4000707. Epub 2013 May 1. PubMed PMID: 23594205.

20: Liu J, Rice A, McGlew K, Shaw V, Park H, Clemente T, Pollard M, Ohlrogge J, Durrett TP. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value. Plant Biotechnol J. 2015 Aug;13(6):858-65. doi: 10.1111/pbi.12325. Epub 2015 Mar 10. PubMed PMID: 25756355.