Cystamine dihydrochloride
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 591248

CAS#: 56-17-7

Description: Cystamine dihydrochloride is a radiation-protective agent that interferes with sulfhydryl enzymes. It may also protect against carbon tetrachloride liver damage.


Chemical Structure

img
Cystamine dihydrochloride
CAS# 56-17-7

Theoretical Analysis

MedKoo Cat#: 591248
Name: Cystamine dihydrochloride
CAS#: 56-17-7
Chemical Formula: C4H14Cl2N2S2
Exact Mass: 224.00
Molecular Weight: 225.190
Elemental Analysis: C, 21.33; H, 6.27; Cl, 31.48; N, 12.44; S, 28.47

Price and Availability

Size Price Availability Quantity
10g USD 250 2 Weeks
25g USD 450 2 Weeks
Bulk inquiry

Synonym:

IUPAC/Chemical Name: 2,2'-Dithiodi(ethylammonium) dichloride

InChi Key: YUFRRMZSSPQMOS-UHFFFAOYSA-N

InChi Code: InChI=1S/C4H12N2S2.2ClH/c5-1-3-7-8-4-2-6;;/h1-6H2;2*1H

SMILES Code: [NH3+]CCSSCC[NH3+].[Cl-].[Cl-]

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Product Data:
Biological target: Cystamine dihydrochloride (Decarboxycystine, 2-Aminoethyl disulfide, 2,2'-Dithiobisethanamine) acts as an anti-infective agent, which is used in the treatment of urinary tract infections and also as a radiation-protective agent that interferes with sulfhydryl enzymes.
In vitro activity: Cystamine treatment resulted in a dose- and time-dependent cytotoxicity in the DU145 and HeLa cell lines but showed no effect in the MCF7 and A549 cell lines (Fig. 1a–d). Reference: Biochim Biophys Acta. 2015 Mar;1853(3):619-31. https://pubmed.ncbi.nlm.nih.gov/25549939/
In vivo activity: Interestingly, cystamine co-treatment profoundly suppressed 2,5-HD-induced motor deficits. Compared with the rats in the 2,5-HD group, the cystamine co-treated animals were able to walk normally although they moved slowly than the rats in the control group. Reference: Toxicol Res (Camb). 2017 Mar 1; 6(2): 199–204. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062339/

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMSO 13.8 61.46
PBS (pH 7.2) 10.0 44.41
Water 33.8 149.92

Preparing Stock Solutions

The following data is based on the product molecular weight 225.19 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol: 1. Cho SY, Lee JH, Ju MK, Jeong EM, Kim HJ, Lim J, Lee S, Cho NH, Park HH, Choi K, Jeon JH, Kim IG. Cystamine induces AIF-mediated apoptosis through glutathione depletion. Biochim Biophys Acta. 2015 Mar;1853(3):619-31. doi: 10.1016/j.bbamcr.2014.12.028. Epub 2014 Dec 27. PMID: 25549939. 2. Wang S, Li X, Li M, Jiang L, Yuan H, Han W, Wang X, Zeng T, Xie K. Cystamine attenuated behavioral deficiency via increasing the expression of BDNF and activating PI3K/Akt signaling in 2,5-hexanedione intoxicated rats. Toxicol Res (Camb). 2016 Dec 12;6(2):199-204. doi: 10.1039/c6tx00409a. PMID: 30090490; PMCID: PMC6062339. 3. Cisbani G, Drouin-Ouellet J, Gibrat C, Saint-Pierre M, Lagacé M, Badrinarayanan S, Lavallée-Bourget MH, Charest J, Chabrat A, Boivin L, Lebel M, Bousquet M, Lévesque M, Cicchetti F. Cystamine/cysteamine rescues the dopaminergic system and shows neurorestorative properties in an animal model of Parkinson's disease. Neurobiol Dis. 2015 Oct;82:430-444. doi: 10.1016/j.nbd.2015.07.012. Epub 2015 Jul 29. PMID: 26232588.
In vitro protocol: 1. Cho SY, Lee JH, Ju MK, Jeong EM, Kim HJ, Lim J, Lee S, Cho NH, Park HH, Choi K, Jeon JH, Kim IG. Cystamine induces AIF-mediated apoptosis through glutathione depletion. Biochim Biophys Acta. 2015 Mar;1853(3):619-31. doi: 10.1016/j.bbamcr.2014.12.028. Epub 2014 Dec 27. PMID: 25549939.
In vivo protocol: 1. Wang S, Li X, Li M, Jiang L, Yuan H, Han W, Wang X, Zeng T, Xie K. Cystamine attenuated behavioral deficiency via increasing the expression of BDNF and activating PI3K/Akt signaling in 2,5-hexanedione intoxicated rats. Toxicol Res (Camb). 2016 Dec 12;6(2):199-204. doi: 10.1039/c6tx00409a. PMID: 30090490; PMCID: PMC6062339. 2. Cisbani G, Drouin-Ouellet J, Gibrat C, Saint-Pierre M, Lagacé M, Badrinarayanan S, Lavallée-Bourget MH, Charest J, Chabrat A, Boivin L, Lebel M, Bousquet M, Lévesque M, Cicchetti F. Cystamine/cysteamine rescues the dopaminergic system and shows neurorestorative properties in an animal model of Parkinson's disease. Neurobiol Dis. 2015 Oct;82:430-444. doi: 10.1016/j.nbd.2015.07.012. Epub 2015 Jul 29. PMID: 26232588.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Roncoroni L, Elli L, Braidotti P, Tosi D, Vaira V, Tacchini L, Lombardo V, Branchi F, Scricciolo A, Doneda L. Transglutaminase 2 Mediates the Cytotoxicity of Resveratrol in a Human Cholangiocarcinoma and Gallbladder Cancer Cell Lines. Nutr Cancer. 2018 May 14:1-9. doi: 10.1080/01635581.2018.1470648. [Epub ahead of print] PubMed PMID: 29757003.

2: Wang H, Liu WZ, Tang F, Sui HJ, Zhan XJ, Wang H. Cystamine slows but not inverses the progression of monocrotaline induced-pulmonary arterial hypertension in rats. Can J Physiol Pharmacol. 2018 Apr 10. doi: 10.1139/cjpp-2017-0720. [Epub ahead of print] PubMed PMID: 29633623.

3: Zhou Y, Hu Y, Sun W, Lu S, Cai C, Peng C, Yu J, Popovtzer R, Shen M, Shi X. Radiotherapy-Sensitized Tumor Photothermal Ablation Using γ-Polyglutamic Acid Nanogels Loaded with Polypyrrole. Biomacromolecules. 2018 Apr 6. doi: 10.1021/acs.biomac.8b00184. [Epub ahead of print] PubMed PMID: 29601720.

4: Fraser-Pitt DJ, Mercer DK, Smith D, Kowalczuk A, Robertson J, Lovie E, Perenyi P, Cole M, Doumith M, Hill RLR, Hopkins KL, Woodford N, O'Neil DA. Cysteamine, an Endogenous Aminothiol, and Cystamine, the Disulfide Product of Oxidation, Increase Pseudomonas aeruginosa Sensitivity to Reactive Oxygen and Nitrogen Species and Potentiate Therapeutic Antibiotics against Bacterial Infection. Infect Immun. 2018 May 22;86(6). pii: e00947-17. doi: 10.1128/IAI.00947-17. Print 2018 Jun. PubMed PMID: 29581193.

5: Palanski BA, Khosla C. Cystamine and Disulfiram Inhibit Human Transglutaminase 2 via an Oxidative Mechanism. Biochemistry. 2018 Mar 28. doi: 10.1021/acs.biochem.8b00204. [Epub ahead of print] PubMed PMID: 29570977.

6: Zhang K, Liu J, Guo Y, Li Y, Ma X, Lei Z. Synthesis of temperature, pH, light and dual-redox quintuple-stimuli-responsive shell-crosslinked polymeric nanoparticles for controlled release. Mater Sci Eng C Mater Biol Appl. 2018 Jun 1;87:1-9. doi: 10.1016/j.msec.2018.02.005. Epub 2018 Feb 10. PubMed PMID: 29549937.

7: Tan S, Wang G. Lung cancer targeted therapy: Folate and transferrin dual targeted, glutathione responsive nanocarriers for the delivery of cisplatin. Biomed Pharmacother. 2018 Jun;102:55-63. doi: 10.1016/j.biopha.2018.03.046. Epub 2018 Mar 15. PubMed PMID: 29549729.

8: Yang X, Shi X, Ji J, Zhai G. Development of redox-responsive theranostic nanoparticles for near-infrared fluorescence imaging-guided photodynamic/chemotherapy of tumor. Drug Deliv. 2018 Nov;25(1):780-796. doi: 10.1080/10717544.2018.1451571. PubMed PMID: 29542333.

9: Kwon K, Kim JC. Reduction-Responsive Release of Solid Lipid Nanoparticle Composed of Stearic Acid and Cystamine. J Nanosci Nanotechnol. 2018 May 1;18(5):3102-3109. doi: 10.1166/jnn.2018.14690. PubMed PMID: 29442809.

10: Kallar AR, Muthu J, Selvam S. Bioreducible amino acid-derived polymeric nanoparticles for delivery of functional proteins. Colloids Surf B Biointerfaces. 2018 Apr 1;164:396-405. doi: 10.1016/j.colsurfb.2018.02.004. Epub 2018 Feb 5. PubMed PMID: 29427946.

11: Reyna-Beltrán E, Iranzo M, Calderón-González KG, Mondragón-Flores R, Labra-Barrios ML, Mormeneo S, Luna-Arias JP. The Candida albicans ENO1 gene encodes a transglutaminase involved in growth, cell division, morphogenesis, and osmotic protection. J Biol Chem. 2018 Mar 23;293(12):4304-4323. doi: 10.1074/jbc.M117.810440. Epub 2018 Jan 31. PubMed PMID: 29386353; PubMed Central PMCID: PMC5868267.

12: Zhang L, Wu L, Shi G, Sang X, Ni C. Studies on the preparation and controlled release of redox/pH-responsive zwitterionic nanoparticles based on poly-L-glutamic acid and cystamine. J Biomater Sci Polym Ed. 2018 Apr;29(6):646-662. doi: 10.1080/09205063.2018.1433108. Epub 2018 Feb 12. PubMed PMID: 29376484.

13: Liu M, Du H, Khan AR, Ji J, Yu A, Zhai G. Redox/enzyme sensitive chondroitin sulfate-based self-assembled nanoparticles loading docetaxel for the inhibition of metastasis and growth of melanoma. Carbohydr Polym. 2018 Mar 15;184:82-93. doi: 10.1016/j.carbpol.2017.12.047. Epub 2017 Dec 21. PubMed PMID: 29352946.

14: Pei M, Jia X, Zhao X, Li J, Liu P. Alginate-based cancer-associated, stimuli-driven and turn-on theranostic prodrug nanogel for cancer detection and treatment. Carbohydr Polym. 2018 Mar 1;183:131-139. doi: 10.1016/j.carbpol.2017.12.013. Epub 2017 Dec 9. PubMed PMID: 29352868.

15: Xu X, Wang X, Luo W, Qian Q, Li Q, Han B, Li Y. Triple cell-responsive nanogels for delivery of drug into cancer cells. Colloids Surf B Biointerfaces. 2018 Mar 1;163:362-368. doi: 10.1016/j.colsurfb.2017.12.047. Epub 2017 Dec 28. PubMed PMID: 29335198.

16: Wen Z, Ji X, Tang J, Lin G, Xiao L, Liang C, Wang M, Su F, Ferrandon D, Li Z. Positive Feedback Regulation between Transglutaminase 2 and Toll-Like Receptor 4 Signaling in Hepatic Stellate Cells Correlates with Liver Fibrosis Post Schistosoma japonicum Infection. Front Immunol. 2017 Dec 13;8:1808. doi: 10.3389/fimmu.2017.01808. eCollection 2017. PubMed PMID: 29321784; PubMed Central PMCID: PMC5733538.

17: Ratcliffe LPD, Bentley KJ, Wehr R, Warren NJ, Saunders BR, Armes SP. Cationic disulfide-functionalized worm gels. Polym Chem. 2017 Oct 14;8(38):5962-5971. doi: 10.1039/c7py01306j. Epub 2017 Sep 6. PubMed PMID: 29308095; PubMed Central PMCID: PMC5735358.

18: Lakes AL, Jordan CT, Gupta P, Puleo DA, Hilt JZ, Dziubla TD. Reducible disulfide poly(beta-amino ester) hydrogels for antioxidant delivery. Acta Biomater. 2018 Mar 1;68:178-189. doi: 10.1016/j.actbio.2017.12.030. Epub 2017 Dec 28. PubMed PMID: 29289681; PubMed Central PMCID: PMC5803326.

19: Tan S, Wang G. Redox-responsive and pH-sensitive nanoparticles enhanced stability and anticancer ability of erlotinib to treat lung cancer in vivo. Drug Des Devel Ther. 2017 Dec 8;11:3519-3529. doi: 10.2147/DDDT.S151422. eCollection 2017. PubMed PMID: 29263650; PubMed Central PMCID: PMC5726363.

20: Staegemann MH, Gräfe S, Gitter B, Achazi K, Quaas E, Haag R, Wiehe A. Hyperbranched Polyglycerol Loaded with (Zinc-)Porphyrins: Photosensitizer Release Under Reductive and Acidic Conditions for Improved Photodynamic Therapy. Biomacromolecules. 2018 Jan 8;19(1):222-238. doi: 10.1021/acs.biomac.7b01485. Epub 2017 Dec 12. PubMed PMID: 29232113.