Acid Red 88

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 581235

CAS#: 1658-56-6

Description: Acid red 88 is an anionic dye with potentially useful photocatalytic research applications. Acid red 88 has been used to determine the effect of Au deposition on ZnO photocatalytic activity under visible light. Additionally, the photocatalyst Au-TiO2 was used for photocatalytic degradation of Acid red 88. Acid red 88 is a azo dye. Due to its intense colour, solid samples appear almost black. It is used to dye cotton textiles red. A closely related acid dye is Acid Red 13.


Chemical Structure

img
Acid Red 88
CAS# 1658-56-6

Theoretical Analysis

MedKoo Cat#: 581235
Name: Acid Red 88
CAS#: 1658-56-6
Chemical Formula: C20H13N2NaO4S
Exact Mass: 400.05
Molecular Weight: 400.380
Elemental Analysis: C, 60.00; H, 3.27; N, 7.00; Na, 5.74; O, 15.98; S, 8.01

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Acid Red 88; 11391 Red; Red No. 506; Eniacid Fast Red A; Peony;

IUPAC/Chemical Name: 4-((2-Hydroxy-1-naphthalenyl)azo)1-naphthalenesulfonic acid sodium salt

InChi Key: LGZQSRCLLIPAEE-QUABFQRHSA-M

InChi Code: InChI=1S/C20H14N2O4S.Na/c23-18-11-9-13-5-1-2-6-14(13)20(18)22-21-17-10-12-19(27(24,25)26)16-8-4-3-7-15(16)17;/h1-12,23H,(H,24,25,26);/q;+1/p-1/b22-21+;

SMILES Code: O=S(C1=C2C=CC=CC2=C(/N=N/C3=C4C=CC=CC4=CC=C3O)C=C1)([O-])=O.[Na+]

Appearance: Vivid, dark red, opaque, vitreous solid

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 400.38 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Balachandran K, Venckatesh R, Sivaraj R, Rajiv P. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88. Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jul 15;128:468-74. doi: 10.1016/j.saa.2014.02.127. Epub 2014 Mar 12. PubMed PMID: 24682063.

2: Özcan A, Gençten M. Investigation of acid red 88 oxidation in water by means of electro-Fenton method for water purification. Chemosphere. 2016 Mar;146:245-52. doi: 10.1016/j.chemosphere.2015.12.013. Epub 2015 Dec 28. PubMed PMID: 26735724.

3: Konicki W, Sibera D, Mijowska E, Lendzion-Bieluń Z, Narkiewicz U. Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J Colloid Interface Sci. 2013 May 15;398:152-60. doi: 10.1016/j.jcis.2013.02.021. Epub 2013 Feb 22. PubMed PMID: 23506747.

4: Zhang HK, Lu H, Wang J, Liu GF, Zhou JT. Accelerating effect of bio-reduced graphene oxide on decolorization of Acid Red 18 by Shewanella algae. Appl Biochem Biotechnol. 2014 Sep;174(2):602-11. doi: 10.1007/s12010-014-1106-9. Epub 2014 Aug 2. PubMed PMID: 25085532.

5: Kumar PS, Raj MR, Anandan S, Zhou M, Ashokkumar M. Visible light assisted photocatalytic degradation of acid red 88 using Au-ZnO nanophotocatalysts. Water Sci Technol. 2009;60(6):1589-96. doi: 10.2166/wst.2009.496. PubMed PMID: 19759461.

6: Sathish Kumar PS, Manivel A, Anandan S. Synthesis of Ag-ZnO nanoparticles for enhanced photocatalytic degradation of acid red 88 in aqueous environment. Water Sci Technol. 2009;59(7):1423-30. doi: 10.2166/wst.2009.129. PubMed PMID: 19381009.

7: Sathish Kumar PS, Sivakumar R, Anandan S, Madhavan J, Maruthamuthu P, Ashokkumar M. Photocatalytic degradation of Acid Red 88 using Au-TiO(2) nanoparticles in aqueous solutions. Water Res. 2008 Dec;42(19):4878-84. doi: 10.1016/j.watres.2008.09.027. Epub 2008 Oct 7. PubMed PMID: 18945469.

8: Olya ME, Pirkarami A, Soleimani M, Bahmaei M. Photoelectrocatalytic degradation of acid dye using Ni-TiO2 with the energy supplied by solar cell: mechanism and economical studies. J Environ Manage. 2013 May 30;121:210-9. doi: 10.1016/j.jenvman.2013.01.041. Epub 2013 Apr 2. PubMed PMID: 23562912.

9: Yu J, Ogata D, Gai Z, Taguchi S, Tanaka I, Ooi T, Yao M. Structures of AzrA and of AzrC complexed with substrate or inhibitor: insight into substrate specificity and catalytic mechanism. Acta Crystallogr D Biol Crystallogr. 2014 Feb;70(Pt 2):553-64. doi: 10.1107/S1399004713030988. Epub 2014 Jan 31. PubMed PMID: 24531489.

10: Haghshenas H, Kay M, Dehghanian F, Tavakol H. Molecular dynamics study of biodegradation of azo dyes via their interactions with AzrC azoreductase. J Biomol Struct Dyn. 2016;34(3):453-62. doi: 10.1080/07391102.2015.1039585. Epub 2015 Sep 1. PubMed PMID: 26325128.

11: Liu X, Yang JL, Li JH, Li XL, Li J, Lu XY, Shen JZ, Wang YW, Zhang ZH. Analysis of water-soluble azo dyes in soft drinks by high resolution UPLC-MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011 Oct;28(10):1315-23. doi: 10.1080/19440049.2011.604795. PubMed PMID: 22007886.

12: Park JY, Hirata Y, Hamada K. Interactions between dyes and surfactants in inkjet ink used for textiles. J Oleo Sci. 2011;60(12):627-37. PubMed PMID: 22123244.

13: Clarke CE, Kielar F, Talbot HM, Johnson KL. Oxidative decolorization of acid azo dyes by a Mn oxide containing waste. Environ Sci Technol. 2010 Feb 1;44(3):1116-22. doi: 10.1021/es902305e. PubMed PMID: 20070073.

14: Gao B, Luo X, Fu H, Chen Y, Lin B, Gu Z. Facile synthesis of TiO2 microspheres with reactive (001) facets for improved photocatalytic performance. J Nanosci Nanotechnol. 2014 May;14(5):3969-75. PubMed PMID: 24734675.

15: Dehghanian F, Kay M, Kahrizi D. A novel recombinant AzrC protein proposed by molecular docking and in silico analyses to improve azo dye's binding affinity. Gene. 2015 Sep 15;569(2):233-8. doi: 10.1016/j.gene.2015.05.063. Epub 2015 May 28. PubMed PMID: 26026905.

16: Matsumoto K, Mukai Y, Ogata D, Shozui F, Nduko JM, Taguchi S, Ooi T. Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus. Appl Microbiol Biotechnol. 2010 May;86(5):1431-8. doi: 10.1007/s00253-009-2351-7. Epub 2009 Dec 9. PubMed PMID: 19997911.

17: Sridhar S, Chinnathambi V, Arumugam P, Suresh PK. In silico and in vitro physicochemical screening of Rigidoporus sp. crude laccase-assisted decolorization of synthetic dyes--approaches for a cost-effective enzyme-based remediation methodology. Appl Biochem Biotechnol. 2013 Feb;169(3):911-22. doi: 10.1007/s12010-012-0041-x. Epub 2013 Jan 6. PubMed PMID: 23292904.

18: Padmesh TV, Vijayaraghavan K, Sekaran G, Velan M. Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides. J Hazard Mater. 2005 Oct 17;125(1-3):121-9. PubMed PMID: 15955624.

19: Pérez-Urquiza M, Prat MD, Beltrán JL. Determination of sulphonate dyes in water by ion-interaction high-performance liquid chromatography. J Chromatogr A. 2000 Feb 25;871(1-2):227-34. PubMed PMID: 10735303.

20: Pérez-Urquiza M, Ferrer R, Beltrán JL. Determination of sulfonated azo dyes in river water samples by capillary zone electrophoresis. J Chromatogr A. 2000 Jun 23;883(1-2):277-83. PubMed PMID: 10910220.