Pyrophosphoric acid, chloromethyl trimethyl ester

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 571594

CAS#: 3309-75-9

Description: Pyrophosphoric acid, chloromethyl trimethyl ester is an agricultural biochemical.

Chemical Structure

Pyrophosphoric acid, chloromethyl trimethyl ester
CAS# 3309-75-9

Theoretical Analysis

MedKoo Cat#: 571594
Name: Pyrophosphoric acid, chloromethyl trimethyl ester
CAS#: 3309-75-9
Chemical Formula: C4H11ClO7P2
Exact Mass: 267.9669
Molecular Weight: 268.52
Elemental Analysis: C, 17.89; H, 4.13; Cl, 13.20; O, 41.71; P, 23.07

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: ACR 58-26; ACR58-26; ACR-58-26

IUPAC/Chemical Name: Pyrophosphoric acid, chloromethyl trimethyl ester


InChi Code: InChI=1S/C4H11ClO7P2/c1-8-13(6,9-2)12-14(7,10-3)11-4-5/h4H2,1-3H3


Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight 268.52 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.


Dilution Calculator

Calculate the dilution required to prepare a stock solution.

1: Ji B, Zhao C, Yan K, Sun G. Effects of divalent anionic catalysts on cross-linking of cellulose with 1,2,3,4-butanetetracarboxylic acid. Carbohydr Polym. 2018 Feb 1;181:292-299. doi: 10.1016/j.carbpol.2017.10.081. Epub 2017 Oct 23. PubMed PMID: 29253975.

2: Shornikov A, Tran H, Macias J, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-L-rhamnose-biosynthetic enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RfbC). Acta Crystallogr F Struct Biol Commun. 2017 Dec 1;73(Pt 12):664-671. doi: 10.1107/S2053230X17015849. Epub 2017 Nov 10. PubMed PMID: 29199987; PubMed Central PMCID: PMC5713671.

3: Atis M, Johnson KA, Elber R. Pyrophosphate Release in the Protein HIV Reverse Transcriptase. J Phys Chem B. 2017 Oct 19;121(41):9557-9565. doi: 10.1021/acs.jpcb.7b08320. Epub 2017 Oct 4. PubMed PMID: 28926712; PubMed Central PMCID: PMC5648621.

4: Puljula E, Turhanen PA. Semi-preparative high-performance countercurrent chromatography method for the purification of chemically synthesized ATP analogue, ApppI. J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Sep 15;1063:180-182. doi: 10.1016/j.jchromb.2017.08.038. Epub 2017 Aug 30. PubMed PMID: 28869872.

5: Cordeiro CD, Saiardi A, Docampo R. The inositol pyrophosphate synthesis pathway in Trypanosoma brucei is linked to polyphosphate synthesis in acidocalcisomes. Mol Microbiol. 2017 Oct;106(2):319-333. doi: 10.1111/mmi.13766. Epub 2017 Aug 22. PubMed PMID: 28792096; PubMed Central PMCID: PMC5630508.

6: Caballero D, Li Y, Fetene J, Ponsetto J, Chen A, Zhu C, Braddock DT, Bergwitz C. Intraperitoneal pyrophosphate treatment reduces renal calcifications in Npt2a null mice. PLoS One. 2017 Jul 13;12(7):e0180098. doi: 10.1371/journal.pone.0180098. eCollection 2017. PubMed PMID: 28704395; PubMed Central PMCID: PMC5509111.

7: Curci A, Gandin V, Marzano C, Hoeschele JD, Natile G, Margiotta N. Novel Kiteplatin Pyrophosphate Derivatives with Improved Efficacy. Inorg Chem. 2017 Jul 3;56(13):7482-7493. doi: 10.1021/acs.inorgchem.7b00931. Epub 2017 Jun 21. PubMed PMID: 28636387.

8: Fischbacher A, von Sonntag C, Schmidt TC. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios. Chemosphere. 2017 Sep;182:738-744. doi: 10.1016/j.chemosphere.2017.05.039. Epub 2017 May 7. PubMed PMID: 28531840.

9: Germain DP. Pseudoxanthoma elasticum. Orphanet J Rare Dis. 2017 May 10;12(1):85. doi: 10.1186/s13023-017-0639-8. Review. PubMed PMID: 28486967; PubMed Central PMCID: PMC5424392.

10: Trofimova ES, Zykova MV, Ligacheva AA, Sherstoboev EY, Zhdanov VV, Belousov MV, Yusubov MS, Krivoshchekov SV, Danilets MG, Dygai AM. Influence of Humic Acids Extracted from Peat by Different Methods on Functional Activity of Macrophages in Vitro. Bull Exp Biol Med. 2017 Apr;162(6):741-745. doi: 10.1007/s10517-017-3702-5. Epub 2017 Apr 20. PubMed PMID: 28429211.

11: Pomozi V, Brampton C, van de Wetering K, Zoll J, Calio B, Pham K, Owens JB, Marh J, Moisyadi S, Váradi A, Martin L, Bauer C, Erdmann J, Aherrahrou Z, Le Saux O. Pyrophosphate Supplementation Prevents Chronic and Acute Calcification in ABCC6-Deficient Mice. Am J Pathol. 2017 Jun;187(6):1258-1272. doi: 10.1016/j.ajpath.2017.02.009. Epub 2017 Apr 14. PubMed PMID: 28416300; PubMed Central PMCID: PMC5455066.

12: Anastasiou AD, Strafford S, Posada-Estefan O, Thomson CL, Hussain SA, Edwards TJ, Malinowski M, Hondow N, Metzger NK, Brown CTA, Routledge MN, Brown AP, Duggal MS, Jha A. β-pyrophosphate: A potential biomaterial for dental applications. Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:885-894. doi: 10.1016/j.msec.2017.02.116. Epub 2017 Feb 24. PubMed PMID: 28415544.

13: Wang F, Zhang C, Xue Q, Li H, Xian Y. Label-free upconversion nanoparticles-based fluorescent probes for sequential sensing of Cu(2+), pyrophosphate and alkaline phosphatase activity. Biosens Bioelectron. 2017 Sep 15;95:21-26. doi: 10.1016/j.bios.2017.04.010. Epub 2017 Apr 12. PubMed PMID: 28411533.

14: Villa-Bellosta R, Hamczyk MR, Andrés V. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate. PLoS One. 2017 Mar 31;12(3):e0174998. doi: 10.1371/journal.pone.0174998. eCollection 2017. PubMed PMID: 28362852; PubMed Central PMCID: PMC5376322.

15: Uitto J, Li Q, van de Wetering K, Váradi A, Terry SF. Insights into Pathomechanisms and Treatment Development in Heritable Ectopic Mineralization Disorders: Summary of the PXE International Biennial Research Symposium-2016. J Invest Dermatol. 2017 Apr;137(4):790-795. doi: 10.1016/j.jid.2016.12.014. Review. PubMed PMID: 28340679; PubMed Central PMCID: PMC5831331.

16: Halling Linder C, Ek-Rylander B, Krumpel M, Norgård M, Narisawa S, Millán JL, Andersson G, Magnusson P. Bone Alkaline Phosphatase and Tartrate-Resistant Acid Phosphatase: Potential Co-regulators of Bone Mineralization. Calcif Tissue Int. 2017 Jul;101(1):92-101. doi: 10.1007/s00223-017-0259-2. Epub 2017 Mar 16. PubMed PMID: 28303318; PubMed Central PMCID: PMC5486932.

17: Daryl Ariawan A, Webb JE, Howe EN, Gale PA, Thordarson P, Hunter L. Cyclic peptide unguisin A is an anion receptor with high affinity for phosphate and pyrophosphate. Org Biomol Chem. 2017 Apr 5;15(14):2962-2967. doi: 10.1039/c7ob00316a. PubMed PMID: 28294280.

18: Wakai S, Abe A, Fujii S, Nakasone K, Sambongi Y. Pyrophosphate hydrolysis in the extremely halophilic archaeon Haloarcula japonica is catalyzed by a single enzyme with a broad ionic strength range. Extremophiles. 2017 May;21(3):471-477. doi: 10.1007/s00792-017-0917-3. Epub 2017 Feb 17. PubMed PMID: 28213825.

19: Wu S. Molecular dynamics simulation study of the "stay or leave" problem for two magnesium ions in gene transcription. Proteins. 2017 Jun;85(6):1002-1007. doi: 10.1002/prot.25268. Epub 2017 Mar 7. PubMed PMID: 28205291.

20: Li Q, Kingman J, van de Wetering K, Tannouri S, Sundberg JP, Uitto J. Abcc6 Knockout Rat Model Highlights the Role of Liver in PPi Homeostasis in Pseudoxanthoma Elasticum. J Invest Dermatol. 2017 May;137(5):1025-1032. doi: 10.1016/j.jid.2016.11.042. Epub 2017 Jan 19. PubMed PMID: 28111129.