Naptalam
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 571590

CAS#: 132-66-1

Description: Naptalam is an herbicide.


Price and Availability

Size
Price

100mg
USD 230
Size
Price

Size
Price

Napthalam, purity > 98%, is in stock. Current shipping out time is about 2 weeks after order is received. CoA, QC data and MSDS documents are available in one week after order is received.


Chemical Structure

img

Theoretical Analysis

MedKoo Cat#: 571590
Name: Naptalam
CAS#: 132-66-1
Chemical Formula: C18H13NO3
Exact Mass: 291.0895
Molecular Weight: 291.31
Elemental Analysis: C, 74.22; H, 4.50; N, 4.81; O, 16.48


Synonym: NSC 204421; NSC204421; NSC-204421

IUPAC/Chemical Name: Benzoic acid, 2-((1-naphthalenylamino)carbonyl)- (9CI)

InChi Key: JXTHEWSKYLZVJC-UHFFFAOYSA-N

InChi Code: InChI=1S/C18H13NO3/c20-17(14-9-3-4-10-15(14)18(21)22)19-16-11-5-7-12-6-1-2-8-13(12)16/h1-11H,(H,19,20)(H,21,22)

SMILES Code: O=C(O)C1=CC=CC=C1C(NC2=C3C=CC=CC3=CC=C2)=O


Technical Data

Appearance:
Solid powder

Purity:
>98% (or refer to the Certificate of Analysis)

Shipping Condition:
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition:
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility:
Soluble in DMSO

Shelf Life:
>2 years if stored properly

Drug Formulation:
This drug may be formulated in DMSO

Stock Solution Storage:
0 - 4 C for short term (days to weeks), or -20 C for long term (months).

Harmonized System Code:
293490


References

1: Ferreira MC, Cantrell CL, Duke SO, Ali A, Rosa LH. New Pesticidal Diterpenoids from Vellozia gigantea (Velloziaceae), an Endemic Neotropical Plant Living in the Endangered Brazilian Biome Rupestrian Grasslands. Molecules. 2017 Jan 21;22(1). pii: E175. doi: 10.3390/molecules22010175. PubMed PMID: 28117710.

2: Jiu S, Wang C, Zheng T, Liu Z, Leng X, Pervaiz T, Lotfi A, Fang J, Wang X. Characterization of VvPAL-like promoter from grapevine using transgenic tobacco plants. Funct Integr Genomics. 2016 Nov;16(6):595-617. Epub 2016 Aug 25. PubMed PMID: 27562678.

3: Majumdar A, Kar RK. Integrated role of ROS and Ca(+2) in blue light-induced chloroplast avoidance movement in leaves of Hydrilla verticillata (L.f.) Royle. Protoplasma. 2016 Nov;253(6):1529-1539. Epub 2015 Nov 16. PubMed PMID: 26573536.

4: Tanaka R, Amijima M, Iwata Y, Koizumi N, Mishiba KI. Effect of light and auxin transport inhibitors on endoreduplication in hypocotyl and cotyledon. Plant Cell Rep. 2016 Dec;35(12):2539-2547. Epub 2016 Sep 16. PubMed PMID: 27637202.

5: Foo E, McAdam EL, Weller JL, Reid JB. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. J Exp Bot. 2016 Apr;67(8):2413-24. doi: 10.1093/jxb/erw047. Epub 2016 Feb 17. PubMed PMID: 26889005; PubMed Central PMCID: PMC4809293.

6: Kim HJ, Kobayashi A, Fujii N, Miyazawa Y, Takahashi H. Gravitropic response and circumnutation in pea (Pisum sativum) seedling roots. Physiol Plant. 2016 May;157(1):108-18. doi: 10.1111/ppl.12406. Epub 2016 Mar 3. PubMed PMID: 26565659.

7: Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang de A, Qi Y. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). Plant J. 2015 Sep;83(5):818-30. doi: 10.1111/tpj.12929. Epub 2015 Jul 22. PubMed PMID: 26140668.

8: Brewer PB, Dun EA, Gui R, Mason MG, Beveridge CA. Strigolactone Inhibition of Branching Independent of Polar Auxin Transport. Plant Physiol. 2015 Aug;168(4):1820-9. doi: 10.1104/pp.15.00014. Epub 2015 Jun 25. PubMed PMID: 26111543; PubMed Central PMCID: PMC4528729.

9: Rodríguez-Sanz H, Solís MT, López MF, Gómez-Cadenas A, Risueño MC, Testillano PS. Auxin Biosynthesis, Accumulation, Action and Transport are Involved in Stress-Induced Microspore Embryogenesis Initiation and Progression in Brassica napus. Plant Cell Physiol. 2015 Jul;56(7):1401-17. doi: 10.1093/pcp/pcv058. Epub 2015 Apr 22. PubMed PMID: 25907568.

10: Qing XD, Wu HL, Zhang XH, Li Y, Gu HW, Yu RQ. A novel fourth-order calibration method based on alternating quinquelinear decomposition algorithm for processing high performance liquid chromatography-diode array detection- kinetic-pH data of naptalam hydrolysis. Anal Chim Acta. 2015 Feb 25;861:12-24. doi: 10.1016/j.aca.2014.12.037. Epub 2014 Dec 24. PubMed PMID: 25702270.

11: Ma C, Meir S, Xiao L, Tong J, Liu Q, Reid MS, Jiang CZ. A KNOTTED1-LIKE HOMEOBOX protein regulates abscission in tomato by modulating the auxin pathway. Plant Physiol. 2015 Mar;167(3):844-53. doi: 10.1104/pp.114.253815. Epub 2015 Jan 5. PubMed PMID: 25560879; PubMed Central PMCID: PMC4348773.

12: Wang Y, M Folta K. Phototropin 1 and dim-blue light modulate the red light de-etiolation response. Plant Signal Behav. 2014;9(11):e976158. doi: 10.4161/15592324.2014.976158. PubMed PMID: 25482790; PubMed Central PMCID: PMC4623486.

13: Bennett TA, Liu MM, Aoyama T, Bierfreund NM, Braun M, Coudert Y, Dennis RJ, O'Connor D, Wang XY, White CD, Decker EL, Reski R, Harrison CJ. Plasma membrane-targeted PIN proteins drive shoot development in a moss. Curr Biol. 2014 Dec 1;24(23):2776-85. doi: 10.1016/j.cub.2014.09.054. Epub 2014 Nov 13. PubMed PMID: 25448003; PubMed Central PMCID: PMC4251699.

14: Yoneyama K, Kisugi T, Xie X, Arakawa R, Ezawa T, Nomura T, Yoneyama K. Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots. Planta. 2015 Mar;241(3):687-98. doi: 10.1007/s00425-014-2208-x. Epub 2014 Nov 23. PubMed PMID: 25417194.

15: Li N, Sun L, Zhang L, Song Y, Hu P, Li C, Hao FS. AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis. Planta. 2015 Mar;241(3):591-602. doi: 10.1007/s00425-014-2204-1. Epub 2014 Nov 16. PubMed PMID: 25399352.

16: Zaban B, Liu W, Jiang X, Nick P. Plant cells use auxin efflux to explore geometry. Sci Rep. 2014 Jul 28;4:5852. doi: 10.1038/srep05852. PubMed PMID: 25068254; PubMed Central PMCID: PMC5376164.

17: Moni A, Lee AY, Briggs WR, Han IS. The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation. Plant Biol (Stuttg). 2015 Jan;17(1):34-40. doi: 10.1111/plb.12187. Epub 2014 May 6. PubMed PMID: 24803136.

18: Balanzà V, Ballester P, Colombo M, Fourquin C, Martínez-Fernández I, Ferrándiz C. Genetic and phenotypic analyses of carpel development in Arabidopsis. Methods Mol Biol. 2014;1110:231-49. doi: 10.1007/978-1-4614-9408-9_11. PubMed PMID: 24395260.

19: Lin Y, Zhang W, Qi F, Cui W, Xie Y, Shen W. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J Plant Physiol. 2014 Jan 15;171(2):1-8. doi: 10.1016/j.jplph.2013.08.009. Epub 2013 Nov 14. PubMed PMID: 24331413.

20: Schnaubelt D, Queval G, Dong Y, Diaz-Vivancos P, Makgopa ME, Howell G, De Simone A, Bai J, Hannah MA, Foyer CH. Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Plant Cell Environ. 2015 Feb;38(2):266-79. doi: 10.1111/pce.12252. Epub 2014 Jan 13. PubMed PMID: 24329757.