Propargyl-PEG5-azide
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 571707

CAS#: 1589522-62-2

Description: Propargyl-PEG5-azide is a PEG derivative containing a propargyl group and an azide group. The propargyl group can be reacted with azide-bearing compounds or biomolecules via copper catalyzed azide-alkyne Click Chemistry to yield a stable triazole linkage. The azide group can react with alkyne, BCN, DBCO via Click Chemistry to yield a stable triazole linkage. PEG Linkers can be useful in the development of antibody drug conjugates.


Chemical Structure

img
Propargyl-PEG5-azide
CAS# 1589522-62-2

Theoretical Analysis

MedKoo Cat#: 571707
Name: Propargyl-PEG5-azide
CAS#: 1589522-62-2
Chemical Formula: C13H23N3O5
Exact Mass: 301.16
Molecular Weight: 301.340
Elemental Analysis: C, 51.82; H, 7.69; N, 13.94; O, 26.55

Price and Availability

Size Price Availability Quantity
100mg USD 460
250mg USD 740
500mg USD 1100
Bulk inquiry

Synonym: Propargyl-PEG5-azide

IUPAC/Chemical Name: Propargyl-PEG5-azide

InChi Key: MUVOUQDZNKRSQW-UHFFFAOYSA-N

InChi Code: InChI=1S/C13H23N3O5/c1-2-4-17-6-8-19-10-12-21-13-11-20-9-7-18-5-3-15-16-14/h1H,3-13H2

SMILES Code: C#CCOCCOCCOCCOCCOCCN=[N+]=[N-]

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info: The hydrophilic PEG spacer increases solubility in aqueous media.

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 301.34 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Sano K, Nakajima T, Miyazaki K, Ohuchi Y, Ikegami T, Choyke PL, Kobayashi H. Short PEG-linkers improve the performance of targeted, activatable monoclonal antibody-indocyanine green optical imaging probes. Bioconjug Chem. 2013 May 15;24(5):811-6. doi: 10.1021/bc400050k. Epub 2013 May 3. PubMed PMID: 23600922; PubMed Central PMCID: PMC3674550.

2: Harrison E, Coulter JA, Dixon D. Gold nanoparticle surface functionalization: mixed monolayer versus hetero bifunctional peg linker. Nanomedicine (Lond). 2016 Apr;11(7):851-65. Review. PubMed PMID: 27021417.

3: Augusto MT, Hollmann A, Porotto M, Moscona A, Santos NC. Antiviral Lipopeptide-Cell Membrane Interaction Is Influenced by PEG Linker Length. Molecules. 2017 Jul 15;22(7). pii: E1190. doi: 10.3390/molecules22071190. PubMed PMID: 28714870; PubMed Central PMCID: PMC5776016.

4: Tuma R, Russell M, Rosendahl M, Thomas GJ Jr. Solution conformation of the extracellular domain of the human tumor necrosis factor receptor probed by Raman and UV-resonance Raman spectroscopy: structural effects of an engineered PEG linker. Biochemistry. 1995 Nov 21;34(46):15150-6. PubMed PMID: 7578129.