Xylose

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 341494

CAS#: 25990-60-7

Description: Xylose is a biochemical.


Chemical Structure

img
Xylose
CAS# 25990-60-7

Theoretical Analysis

MedKoo Cat#: 341494
Name: Xylose
CAS#: 25990-60-7
Chemical Formula: C5H10O5
Exact Mass: 150.05
Molecular Weight: 150.130
Elemental Analysis: C, 40.00; H, 6.71; O, 53.28

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Xylose;

IUPAC/Chemical Name: Xylose

InChi Key: SRBFZHDQGSBBOR-LECHCGJUSA-N

InChi Code: InChI=1S/C5H10O5/c6-2-1-10-5(9)4(8)3(2)7/h2-9H,1H2/t2-,3+,4-,5+/m1/s1

SMILES Code: O1[C@@H]([C@H](O)[C@H]([C@@H](C1)O)O)O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 150.13 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Zhao R, Zhao R, Tu Y, Zhang X, Deng L, Chen X. A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity. PLoS One. 2018 May 8;13(5):e0197067. doi: 10.1371/journal.pone.0197067. eCollection 2018. PubMed PMID: 29738566.

2: Liang S, Huang Y, Shim YY, Ma X, Reaney MJT, Wang Y. Novel Flaxseed Gum Nanocomposites are Slow Release Iron Supplements. J Agric Food Chem. 2018 May 8. doi: 10.1021/acs.jafc.8b01347. [Epub ahead of print] PubMed PMID: 29737167.

3: Chen Z, Reznicek WD, Wan C. Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Bioresour Technol. 2018 Apr 18;263:40-48. doi: 10.1016/j.biortech.2018.04.058. [Epub ahead of print] PubMed PMID: 29729540.

4: Seo S, Kang YR, Lee YK, Lee JH, Chang YH. Physicochemical, molecular, emulsifying and rheological characterizations of sage (Salvia splendens) seed gum. Int J Biol Macromol. 2018 May 2. pii: S0141-8130(18)30687-1. doi: 10.1016/j.ijbiomac.2018.04.173. [Epub ahead of print] PubMed PMID: 29729345.

5: Singh N, Puri M, Tuli DK, Gupta RP, Barrow CJ, Mathur AS. Bioethanol production by a xylan fermenting thermophilic isolate Clostridium strain DBT-IOC-DC21. Anaerobe. 2018 May 2. pii: S1075-9964(18)30071-4. doi: 10.1016/j.anaerobe.2018.04.014. [Epub ahead of print] PubMed PMID: 29729318.

6: Mustard JA, Alvarez V, Barocio S, Mathews J, Stoker A, Malik K. Nutritional value and taste play different roles in learning and memory in the honey bee (Apis mellifera). J Insect Physiol. 2018 May 2;107:250-256. doi: 10.1016/j.jinsphys.2018.04.014. [Epub ahead of print] PubMed PMID: 29729260.

7: Boyce A, Walsh G. Purification and Characterisation of a Thermostable β-Xylosidase from Aspergillus niger van Tieghem of Potential Application in Lignocellulosic Bioethanol Production. Appl Biochem Biotechnol. 2018 May 5. doi: 10.1007/s12010-018-2761-z. [Epub ahead of print] PubMed PMID: 29728961.

8: Longati AA, Lino ARA, Giordano RC, Furlan FF, Cruz AJG. Defining research & development process targets through retro-techno-economic analysis: The sugarcane biorefinery case. Bioresour Technol. 2018 Apr 26;263:1-9. doi: 10.1016/j.biortech.2018.04.102. [Epub ahead of print] PubMed PMID: 29723843.

9: Sun J, Tian K, Wang J, Dong Z, Liu X, Permaul K, Singh S, Prior BA, Wang Z. Improved ethanol productivity from lignocellulosic hydrolysates by Escherichia coli with regulated glucose utilization. Microb Cell Fact. 2018 May 2;17(1):66. doi: 10.1186/s12934-018-0915-x. PubMed PMID: 29720171.

10: Valinhas RV, Pantoja LA, Maia ACF, Miguel MGCP, Vanzela APFC, Nelson DL, Santos AS. Xylose fermentation to ethanol by new Galactomyces geotrichum and Candida akabanensis strains. PeerJ. 2018 Apr 27;6:e4673. doi: 10.7717/peerj.4673. eCollection 2018. PubMed PMID: 29719736; PubMed Central PMCID: PMC5926554.

11: Saha B, Sadula S. Aerobic Oxidation of Xylose to Xylaric acid in Water over Pt Catalysts. ChemSusChem. 2018 May 2. doi: 10.1002/cssc.201800494. [Epub ahead of print] PubMed PMID: 29719133.

12: Kowalczyk S, Komoń-Janczara E, Glibowska A, Kuzdraliński A, Czernecki T, Targoński Z. A co-utilization strategy to consume glycerol and monosaccharides by Rhizopus strains for fumaric acid production. AMB Express. 2018 Apr 30;8(1):69. doi: 10.1186/s13568-018-0601-8. PubMed PMID: 29713843.

13: Qin L, Zhao X, Li WC, Zhu JQ, Liu L, Li BZ, Yuan YJ. Process analysis and optimization of simultaneous saccharification and co-fermentation of ethylenediamine-pretreated corn stover for ethanol production. Biotechnol Biofuels. 2018 Apr 23;11:118. doi: 10.1186/s13068-018-1118-8. eCollection 2018. PubMed PMID: 29713377; PubMed Central PMCID: PMC5911964.

14: Guo J, Huang S, Chen Y, Guo X, Xiao D. Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans. Microb Cell Fact. 2018 Apr 30;17(1):64. doi: 10.1186/s12934-018-0911-1. PubMed PMID: 29712559; PubMed Central PMCID: PMC5925849.

15: Xu ZH, Cheng AD, Xing XP, Zong MH, Bai YP, Li N. Improved synthesis of 2,5-bis(hydroxymethyl)furan from 5-hydroxymethylfurfural using acclimatized whole cells entrapped in calcium alginate. Bioresour Technol. 2018 Apr 22;262:177-183. doi: 10.1016/j.biortech.2018.04.077. [Epub ahead of print] PubMed PMID: 29705609.

16: Crooks C, Palmer JM, Lindner DL. Draft Genome Sequence of Burkholderia cepacia ATCC 17759, a Polyhydroxybutyrate-Co-Valerate Copolymer-Producing Bacterium. Genome Announc. 2018 Apr 26;6(17). pii: e00348-18. doi: 10.1128/genomeA.00348-18. PubMed PMID: 29700161; PubMed Central PMCID: PMC5920182.

17: Di J, Ma C, Qian J, Liao X, Peng B, He Y. Chemo-enzymatic synthesis of furfuralcohol from chestnut shell hydrolysate by a sequential acid-catalyzed dehydration under microwave and Escherichia coli CCZU-Y10 whole-cells conversion. Bioresour Technol. 2018 Apr 12;262:52-58. doi: 10.1016/j.biortech.2018.04.038. [Epub ahead of print] PubMed PMID: 29698837.

18: Westbrook AW, Ren X, Oh J, Moo-Young M, Chou CP. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab Eng. 2018 Apr 23;47:401-413. doi: 10.1016/j.ymben.2018.04.016. [Epub ahead of print] PubMed PMID: 29698777.

19: Rohman A, van Oosterwijk N, Puspaningsih NNT, Dijkstra BW. Structural basis of product inhibition by arabinose and xylose of the thermostable GH43 β-1,4-xylosidase from Geobacillus thermoleovorans IT-08. PLoS One. 2018 Apr 26;13(4):e0196358. doi: 10.1371/journal.pone.0196358. eCollection 2018. PubMed PMID: 29698436.

20: Monte JR, Laurito-Friend DF, Ferraz A, Milagres AMF. Comparative evaluation of acid and alkaline sulfite pretreatments for enzymatic saccharification of bagasses from three different sugarcane hybrids. Biotechnol Prog. 2018 Apr 26. doi: 10.1002/btpr.2647. [Epub ahead of print] PubMed PMID: 29696824.