CHIR98014 HCl

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 527874

CAS#: CHIR98014 HCl

Description: CHIR98014, also known as CT-98014, is a reversible, cell-permeable inhibitor of GSK3α and GSK3β (IC50 = 0.65 and 0.58 nM, respectively). It is inactive against a series of other serine/threonine or tyrosine kinases. Through its effects on GSK3, CHIR98014 stimulates glycogen synthase in cells (EC50 = 106 nM), potentiates insulin-dependent glucose transport in isolated muscle strips, and improves glucose disposal in diabetic animals. CHIR98014 also reduces tau phosphorylation in rat brains and supports Wnt signaling during osteogenesis. Note: CHIR98014 has an isomer- CHIR98024 (CT-98024); which structure are very similar. Many vendors confused each other.


Chemical Structure

img
CHIR98014 HCl
CAS# CHIR98014 HCl

Theoretical Analysis

MedKoo Cat#: 527874
Name: CHIR98014 HCl
CAS#: CHIR98014 HCl
Chemical Formula: C20H19Cl4N9O2
Exact Mass: 485.09
Molecular Weight: 559.230
Elemental Analysis: C, 42.96; H, 3.42; Cl, 25.36; N, 22.54; O, 5.72

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Related CAS #: 556813-39-9 (CHIR98024)   252935-94-7 (CHIR98014)   CHIR98014 HCl    

Synonym: CHIR98014; CHIR-98014; CHIR 98014; CT 98014; CT98014; CT-98014; CHIR98024 isomer; CHIR 98024 isomer; CHIR-98024 isomer; CT98024 isomer; CT 98024 isomer; CT-98024 isomer;

IUPAC/Chemical Name: 6-N-[2-[[4-(2,4-Dichlorophenyl)-5-imidazol-1-ylpyrimidin-2-yl]amino]ethyl]-3-nitropyridine-2,6-diamine dihydrochloride

InChi Key: WOESAPKWWVPHPK-UHFFFAOYSA-N

InChi Code: InChI=1S/C20H17Cl2N9O2.2ClH/c21-12-1-2-13(14(22)9-12)18-16(30-8-7-24-11-30)10-27-20(29-18)26-6-5-25-17-4-3-15(31(32)33)19(23)28-17;;/h1-4,7-11H,5-6H2,(H3,23,25,28)(H,26,27,29);2*1H

SMILES Code: NC1=NC(NCCNC2=NC=C(N3C=CN=C3)C(C4=CC=C(Cl)C=C4Cl)=N2)=CC=C1[N+]([O-])=O.[H]Cl.[H]Cl

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 559.23 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Samereh S, Hajarian H, Karamishabankareh H, Soltani L, Foroutanifar S. Effects of different concentrations of Chir98014 as an activator of Wnt/beta- catenin signaling pathway on oocyte in-vitro maturation and subsequent embryonic development in Sanjabi ewes. Reprod Domest Anim. 2021 Apr 18. doi: 10.1111/rda.13938. Epub ahead of print. PMID: 33866629.


2: Liu Y, Xue M, Cao D, Qin L, Wang Y, Miao Z, Wang P, Hu X, Shen J, Xiong B. Multi-omics characterization of WNT pathway reactivation to ameliorate BET inhibitor resistance in liver cancer cells. Genomics. 2021 Mar 2;113(3):1057-1069. doi: 10.1016/j.ygeno.2021.02.017. Epub ahead of print. PMID: 33667649.


3: Mathuram TL, Venkatesan T, Das J, Natarajan U, Rathinavelu A. The apoptotic effect of GSK-3 inhibitors: BIO and CHIR 98014 on H1975 lung cancer cells through ROS generation and mitochondrial dysfunction. Biotechnol Lett. 2020 Aug;42(8):1351-1368. doi: 10.1007/s10529-020-02861-w. Epub 2020 Mar 31. PMID: 32236757.


4: Chen Y, Wu B, Lin J, Yu D, Du X, Sheng Z, Yu Y, An C, Zhang X, Li Q, Zhu S, Sun H, Zhang X, Zhang S, Zhou J, Bunpetch V, El-Hashash A, Ji J, Ouyang H. High- Resolution Dissection of Chemical Reprogramming from Mouse Embryonic Fibroblasts into Fibrocartilaginous Cells. Stem Cell Reports. 2020 Mar 10;14(3):478-492. doi: 10.1016/j.stemcr.2020.01.013. Epub 2020 Feb 20. PMID: 32084387; PMCID: PMC7066361.


5: Ocasio JK, Bates RDP, Rapp CD, Gershon TR. GSK-3 modulates SHH-driven proliferation in postnatal cerebellar neurogenesis and medulloblastoma. Development. 2019 Oct 10;146(20):dev177550. doi: 10.1242/dev.177550. PMID: 31540917; PMCID: PMC6826032.


6: Liu H, Zhu J, Mao Z, Zhang G, Hu X, Chen F. Tuft1 promotes thyroid carcinoma cell invasion and proliferation and suppresses apoptosis through the Akt- mTOR/GSK3β signaling pathway. Am J Transl Res. 2018 Dec 15;10(12):4376-4384. PMID: 30662679; PMCID: PMC6325505.


7: Zajkowicz A, Gdowicz-Kłosok A, Krześniak M, Janus P, Łasut B, Rusin M. The Alzheimer's disease-associated TREM2 gene is regulated by p53 tumor suppressor protein. Neurosci Lett. 2018 Aug 10;681:62-67. doi: 10.1016/j.neulet.2018.05.037. Epub 2018 May 26. PMID: 29842899.


8: Qiu YS, Jiang NN, Zhou Y, Yu KY, Gong HY, Liao GJ. LMO3 promotes gastric cancer cell invasion and proliferation through Akt-mTOR and Akt-GSK3β signaling. Int J Mol Med. 2018 May;41(5):2755-2763. doi: 10.3892/ijmm.2018.3476. Epub 2018 Feb 8. PMID: 29436606; PMCID: PMC5846634.


9: Zajkowski T, Nieznanska H, Nieznanski K. Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. Biochim Biophys Acta. 2015 Oct;1853(10 Pt A):2228-39. doi: 10.1016/j.bbamcr.2015.07.002. Epub 2015 Jul 3. PMID: 26149502.


10: Lian X, Bao X, Al-Ahmad A, Liu J, Wu Y, Dong W, Dunn KK, Shusta EV, Palecek SP. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports. 2014 Nov 11;3(5):804-16. doi: 10.1016/j.stemcr.2014.09.005. Epub 2014 Oct 9. Erratum in: Stem Cell Reports. 2015 Jan 13;4(1):170. PMID: 25418725; PMCID: PMC4235141.


11: Naujok O, Lentes J, Diekmann U, Davenport C, Lenzen S. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes. 2014 Apr 29;7:273. doi: 10.1186/1756-0500-7-273. PMID: 24779365; PMCID: PMC4008422.


12: Guerrero F, Herencia C, Almadén Y, Martínez-Moreno JM, Montes de Oca A, Rodriguez-Ortiz ME, Diaz-Tocados JM, Canalejo A, Florio M, López I, Richards WG, Rodriguez M, Aguilera-Tejero E, Muñoz-Castañeda JR. TGF-β prevents phosphate- induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways. PLoS One. 2014 Feb 27;9(2):e89179. doi: 10.1371/journal.pone.0089179. Erratum in: PLoS One. 2014;9(6):e101910. PMID: 24586576; PMCID: PMC3937350.


13: Mao J, Hu X, Xiao Y, Yang C, Ding Y, Hou N, Wang J, Cheng H, Zhang X. Overnutrition stimulates intestinal epithelium proliferation through β-catenin signaling in obese mice. Diabetes. 2013 Nov;62(11):3736-46. doi: 10.2337/db13-0035. Epub 2013 Jul 24. PMID: 23884889; PMCID: PMC3806619.


14: Selenica ML, Jensen HS, Larsen AK, Pedersen ML, Helboe L, Leist M, Lotharius J. Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br J Pharmacol. 2007 Nov;152(6):959-79. doi: 10.1038/sj.bjp.0707471. Epub 2007 Oct 1. PMID: 17906685; PMCID: PMC2078230.


15: Ring DB, Johnson KW, Henriksen EJ, Nuss JM, Goff D, Kinnick TR, Ma ST, Reeder JW, Samuels I, Slabiak T, Wagman AS, Hammond ME, Harrison SD. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes. 2003 Mar;52(3):588-95. doi: 10.2337/diabetes.52.3.588. PMID: 12606497.