Lanolin
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 329823

CAS#: 8006-54-0

Description: Lanolin, also known as wool wax or wool grease, is a yellow fat obtained from sheep's wool. It is used as an emollient, cosmetic, and pharmaceutic aid. Lanolin contains a complex combination of esters and polyesters, consisting chiefly of cholesteryl and isocholesteryl esters of the higher fatty acids. Lanolin and its many derivatives are used extensively in both the personal care (e.g., high value cosmetics, facial cosmetics, lip products) and health care sectors such as topical liniments. Lanolin is also found in lubricants, rust-preventive coatings, shoe polish, and other commercial products. Lanolin is a relatively common allergen and is often misunderstood as a wool allergy. However, allergy to a lanolin-containing product is difficult to pinpoint and often other products containing lanolin may be fine for use. Patch testing can be done if a lanolin allergy is suspected.


Chemical Structure

No image available
Lanolin
CAS# 8006-54-0

Theoretical Analysis

MedKoo Cat#: 329823
Name: Lanolin
CAS#: 8006-54-0
Chemical Formula:
Exact Mass:
Molecular Weight:
Elemental Analysis:

Price and Availability

Size Price Availability Quantity
250.0g USD 190.0 2 Weeks
1.0kg USD 350.0 2 Weeks
2.0kg USD 550.0 2 Weeks
Bulk inquiry

Related CAS #: 114471-15-7; 8036-05-3   8038-41-3   8038-43-5   8040-96-8   8006-54-0    

Synonym: Lanolin, wool wax or wool grease; Anhydrous lanolin; Dewaxed lanolin.

IUPAC/Chemical Name: N/A (mixture)

InChi Key: N/A

InChi Code: N/A

SMILES Code: N/A

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

Lanolin

250.0g / USD 190.0


Additional Information

A typical high purity grade of lanolin is composed predominantly of long chain waxy esters (approximately 97% by weight) the remainder being lanolin alcohols, lanolin acids and lanolin hydrocarbons.

An estimated 8,000 to 20,000 different types of lanolin esters are present in lanolin, resulting from combinations between the 200 or so different lanolin acids and the 100 or so different lanolin alcohols identified so far.

Lanolin’s complex composition of long chain esters, hydroxy esters, diesters, lanolin alcohols, and lanolin acids means in addition to it being a valuable product in its own right, it is also the starting point for the production of a whole spectrum of lanolin derivatives, which possess wide-ranging chemical and physical properties. The main derivatisation routes include hydrolysis, fractional solvent crystallisation, esterification, hydrogenation, and alkoxylation[4] and quaternisation.Lanolin derivatives obtained from these processes are used widely in both high-value cosmetics and skin treatment products.

Hydrolysis of lanolin yields lanolin alcohols and lanolin acids. Lanolin alcohols are a rich source of cholesterol (an important skin lipid) and are powerful water-in-oil emulsifiers; they have been used extensively in skin care products for over 100 years.Notably, approximately 40% of the acids derived from lanolin are alpha hydroxy acids (AHAs).The use of AHAs in skin care products has attracted a great deal of attention in recent years.