Ikarugamycin

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 540219

CAS#: 36531-78-9

Description: Ikarugamycin is a protein translation inhibitor. It also inhibits CCP-dependent phagocytosis and inhibits uptake of oxidized LDL in macrophages.


Chemical Structure

img
Ikarugamycin
CAS# 36531-78-9

Theoretical Analysis

MedKoo Cat#: 540219
Name: Ikarugamycin
CAS#: 36531-78-9
Chemical Formula: C29H38N2O4
Exact Mass: 478.28
Molecular Weight: 478.630
Elemental Analysis: C, 72.77; H, 8.00; N, 5.85; O, 13.37

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym:

IUPAC/Chemical Name: N/A

InChi Key: WSUGGLXIPUHOSG-OKURCWDDSA-N

InChi Code: InChI=1S/C29H38N2O4/c1-3-18-16(2)14-22-20(18)10-11-21-19-6-4-8-26(33)30-13-5-7-24-28(34)27(29(35)31-24)25(32)12-9-17(19)15-23(21)22/h4,8-12,16-24,34H,3,5-7,13-15H2,1-2H3,(H,30,33)(H,31,35)/b8-4+,12-9+/t16-,17+,18-,19+,20-,21+,22-,23+,24+/m0/s1

SMILES Code: CC[C@H]1[C@@H](C)C[C@H]2[C@H]1C=C[C@H]3[C@H]2C[C@@H](/C=C/4)[C@H]3C/C=C/C(NCCC[C@@H](NC5=O)C(O)=C5C4=O)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 478.63 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Antosch J, Schaefers F, Gulder TA. Heterologous reconstitution of ikarugamycin biosynthesis in E. coli. Angew Chem Int Ed Engl. 2014 Mar 10;53(11):3011-4. doi: 10.1002/anie.201310641. Epub 2014 Feb 12. PubMed PMID: 24519911.

2: Lacret R, Oves-Costales D, Gómez C, Díaz C, de la Cruz M, Pérez-Victoria I, Vicente F, Genilloud O, Reyes F. New ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensis. Mar Drugs. 2014 Dec 29;13(1):128-40. doi: 10.3390/md13010128. PubMed PMID: 25551780; PubMed Central PMCID: PMC4306928.

3: Elkin SR, Oswald NW, Reed DK, Mettlen M, MacMillan JB, Schmid SL. Ikarugamycin: A Natural Product Inhibitor of Clathrin-Mediated Endocytosis. Traffic. 2016 Oct;17(10):1139-49. doi: 10.1111/tra.12425. Epub 2016 Aug 8. PubMed PMID: 27392092; PubMed Central PMCID: PMC5260662.

4: Zhang G, Zhang W, Zhang Q, Shi T, Ma L, Zhu Y, Li S, Zhang H, Zhao YL, Shi R, Zhang C. Mechanistic insights into polycycle formation by reductive cyclization in ikarugamycin biosynthesis. Angew Chem Int Ed Engl. 2014 May 5;53(19):4840-4. doi: 10.1002/anie.201402078. Epub 2014 Apr 6. PubMed PMID: 24706593.

5: Greunke C, Antosch J, Gulder TA. Promiscuous hydroxylases for the functionalization of polycyclic tetramate macrolactams--conversion of ikarugamycin to butremycin. Chem Commun (Camb). 2015 Mar 28;51(25):5334-6. doi: 10.1039/c5cc00843c. PubMed PMID: 25711294.

6: Liu C, Wang X, Zhao J, Liu Q, Wang L, Guan X, He H, Xiang W. Streptomyces harbinensis sp. nov., an endophytic, ikarugamycin-producing actinomycete isolated from soybean root [Glycine max (L.) Merr]. Int J Syst Evol Microbiol. 2013 Oct;63(Pt 10):3579-84. doi: 10.1099/ijs.0.050088-0. Epub 2013 Apr 12. PubMed PMID: 23584286.

7: Kyeremeh K, Acquah KS, Sazak A, Houssen W, Tabudravu J, Deng H, Jaspars M. Butremycin, the 3-hydroxyl derivative of ikarugamycin and a protonated aromatic tautomer of 5'-methylthioinosine from a Ghanaian Micromonospora sp. K310. Mar Drugs. 2014 Feb 14;12(2):999-1012. doi: 10.3390/md12020999. PubMed PMID: 24534843; PubMed Central PMCID: PMC3944527.

8: Hasumi K, Shinohara C, Naganuma S, Endo A. Inhibition of the uptake of oxidized low-density lipoprotein in macrophage J774 by the antibiotic ikarugamycin. Eur J Biochem. 1992 Apr 15;205(2):841-6. PubMed PMID: 1572375.

9: Popescu R, Heiss EH, Ferk F, Peschel A, Knasmueller S, Dirsch VM, Krupitza G, Kopp B. Ikarugamycin induces DNA damage, intracellular calcium increase, p38 MAP kinase activation and apoptosis in HL-60 human promyelocytic leukemia cells. Mutat Res. 2011 May 10;709-710:60-6. doi: 10.1016/j.mrfmmm.2011.03.001. Epub 2011 Mar 12. PubMed PMID: 21392513.

10: Xu MJ, Wang JH, Bu XL, Yu HL, Li P, Ou HY, He Y, Xu FD, Hu XY, Zhu XM, Ao P, Xu J. Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin. Sci Rep. 2016 Jan 8;6:18977. doi: 10.1038/srep18977. PubMed PMID: 26744183; PubMed Central PMCID: PMC4705527.

11: Zhang G, Zhang W, Saha S, Zhang C. Recent Advances in Discovery, Biosynthesis and Genome Mining of Medicinally Relevant Polycyclic Tetramate Macrolactams. Curr Top Med Chem. 2016;16(15):1727-39. Review. PubMed PMID: 26456464.

12: Luo T, Fredericksen BL, Hasumi K, Endo A, Garcia JV. Human immunodeficiency virus type 1 Nef-induced CD4 cell surface downregulation is inhibited by ikarugamycin. J Virol. 2001 Mar;75(5):2488-92. PubMed PMID: 11160755; PubMed Central PMCID: PMC114835.

13: Jomon K, Kuroda Y, Ajisaka M, Sakai H. A new antibiotic, ikarugamycin. J Antibiot (Tokyo). 1972 May;25(5):271-80. PubMed PMID: 4625358.

14: Bandmann V, Homann U. Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts. Plant J. 2012 May;70(4):578-84. doi: 10.1111/j.1365-313X.2011.04892.x. Epub 2012 Feb 16. PubMed PMID: 22211449.

15: Malcomson B, Wilson H, Veglia E, Thillaiyampalam G, Barsden R, Donegan S, El Banna A, Elborn JS, Ennis M, Kelly C, Zhang SD, Schock BC. Connectivity mapping (ssCMap) to predict A20-inducing drugs and their antiinflammatory action in cystic fibrosis. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3725-34. doi: 10.1073/pnas.1520289113. Epub 2016 Jun 10. PubMed PMID: 27286825; PubMed Central PMCID: PMC4932930.

16: Greunke C, Glöckle A, Antosch J, Gulder TA. Biocatalytic Total Synthesis of Ikarugamycin. Angew Chem Int Ed Engl. 2017 Apr 3;56(15):4351-4355. doi: 10.1002/anie.201611063. Epub 2017 Jan 27. PubMed PMID: 28128495.

17: Huang EW, Liu CZ, Liang SJ, Zhang Z, Lv XF, Liu J, Zhou JG, Tang YB, Guan YY. Endophilin-A2-mediated increase in scavenger receptor expression contributes to macrophage-derived foam cell formation. Atherosclerosis. 2016 Nov;254:133-141. doi: 10.1016/j.atherosclerosis.2016.10.009. Epub 2016 Oct 6. PubMed PMID: 27741419.

18: Li H, Ye X, Guo X, Geng Z, Wang G. Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. J Hazard Mater. 2016 Aug 15;314:188-96. doi: 10.1016/j.jhazmat.2016.04.043. Epub 2016 Apr 19. PubMed PMID: 27131459.

19: Onelli E, Prescianotto-Baschong C, Caccianiga M, Moscatelli A. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot. 2008;59(11):3051-68. doi: 10.1093/jxb/ern154. Epub 2008 Jul 4. PubMed PMID: 18603619; PubMed Central PMCID: PMC2504345.

20: Bandmann V, Müller JD, Köhler T, Homann U. Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Lett. 2012 Oct 19;586(20):3626-32. doi: 10.1016/j.febslet.2012.08.008. Epub 2012 Aug 27. PubMed PMID: 23046971.