OUN38775
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 530454

CAS#: 1415238-77-5

Description: OUN38775, also known as 5S rRNA modificator, is a rRNA modification agent. 5S rRNA modificator worked as an electrophile for 2’-hydroxyl acylation on structured RNA molecules, yielding accurate structural information comparable to that obtained with existing probes; 5S rRNA RNA modification. This product has no formal name at the moment. For the convenience of communication, a temporary code name was therefore proposed according to MedKoo Chemical Nomenclature (see web page: https://www.medkoo.com/page/naming).


Chemical Structure

img
OUN38775
CAS# 1415238-77-5

Theoretical Analysis

MedKoo Cat#: 530454
Name: OUN38775
CAS#: 1415238-77-5
Chemical Formula: C9H8N2O2
Exact Mass: 176.06
Molecular Weight: 176.175
Elemental Analysis: C, 61.36; H, 4.58; N, 15.90; O, 18.16

Price and Availability

Size Price Availability Quantity
100mg USD 850
200mg USD 1450
500mg USD 2150
1g USD 3250
2g USD 4850
5g USD 7650
Bulk inquiry

Synonym: 5S rRNA modificator; FAI. OUN38775; OUN-38775; OUN 38775;

IUPAC/Chemical Name: Imidazol-1-yl-(2-methylfuran-3-yl)methanone

InChi Key: OOBPIWAAJBRELM-UHFFFAOYSA-N

InChi Code: InChI=1S/C9H8N2O2/c1-7-8(2-5-13-7)9(12)11-4-3-10-6-11/h2-6H,1H3

SMILES Code: O=C(N1C=CN=C1)C2=C(C)OC=C2

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
Soluble in DMSO 0.0 0.00

Preparing Stock Solutions

The following data is based on the product molecular weight 176.18 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Fairley JA, Mitchell LE, Berg T, Kenneth NS, von Schubert C, Silljé HH, Medema RH, Nigg EA, White RJ. Direct regulation of tRNA and 5S rRNA gene transcription by Polo-like kinase 1. Mol Cell. 2012 Feb 24;45(4):541-52. doi: 10.1016/j.molcel.2011.11.030. Erratum in: Mol Cell. 2012 Jul 13;47(1):148-9. PubMed PMID: 22281053.

2: Douet J, Tourmente S. Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis. Heredity (Edinb). 2007 Jul;99(1):5-13. Review. PubMed PMID: 17487217.

3: Kadaba S, Wang X, Anderson JT. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA. 2006 Mar;12(3):508-21. PubMed PMID: 16431988; PubMed Central PMCID: PMC1383588.

4: Malik MQ, Bertke MM, Huber PW. Small ubiquitin-like modifier (SUMO)-mediated repression of the Xenopus Oocyte 5 S rRNA genes. J Biol Chem. 2014 Dec 19;289(51):35468-81. doi: 10.1074/jbc.M114.609123. PubMed PMID: 25368327; PubMed Central PMCID: PMC4271232.

5: Zhang Q, Zhong Q, Evans AG, Levy D, Zhong S. Phosphorylation of histone H3 serine 28 modulates RNA polymerase III-dependent transcription. Oncogene. 2011 Sep 15;30(37):3943-52. doi: 10.1038/onc.2011.105. PubMed PMID: 21460852; PubMed Central PMCID: PMC3134635.

6: Kirpekar F, Douthwaite S, Roepstorff P. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry. RNA. 2000 Feb;6(2):296-306. PubMed PMID: 10688367; PubMed Central PMCID: PMC1369914.

7: Bruenger E, Kowalak JA, Kuchino Y, McCloskey JA, Mizushima H, Stetter KO, Crain PF. 5S rRNA modification in the hyperthermophilic archaea Sulfolobus solfataricus and Pyrodictium occultum. FASEB J. 1993 Jan;7(1):196-200. PubMed PMID: 8422966.

8: Dontsova OA, Efimov AV, Kopylov AM. [The 5S rRNA-protein complex of Escherichia coli studied by carbodiimide modification]. Nauchnye Doki Vyss Shkoly Biol Nauki. 1990;(2):22-30. Russian. PubMed PMID: 1693861.

9: Grosjean H, Gaspin C, Marck C, Decatur WA, de Crécy-Lagard V. RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes. BMC Genomics. 2008 Oct 9;9:470. doi: 10.1186/1471-2164-9-470. PubMed PMID: 18844986; PubMed Central PMCID: PMC2584109.

10: Quan S, Zhang N, French S, Squires CL. Transcriptional polarity in rRNA operons of Escherichia coli nusA and nusB mutant strains. J Bacteriol. 2005 Mar;187(5):1632-8. PubMed PMID: 15716433; PubMed Central PMCID: PMC1063997.

11: Yan M, Wang Y, Hu Y, Feng Y, Dai C, Wu J, Wu D, Zhang F, Zhai Q. A high-throughput quantitative approach reveals more small RNA modifications in mouse liver and their correlation with diabetes. Anal Chem. 2013 Dec 17;85(24):12173-81. doi: 10.1021/ac4036026. PubMed PMID: 24261999.

12: Wendland J, Pöhlmann R, Dietrich F, Steiner S, Mohr C, Philippsen P. Compact organization of rRNA genes in the filamentous fungus Ashbya gossypii. Curr Genet. 1999 Jul;35(6):618-25. PubMed PMID: 10467006.

13: Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A. 2004 May 11;101(19):7287-92. PubMed PMID: 15123812; PubMed Central PMCID: PMC409911.

14: Miura K, Tsuda S, Kakuchi J, Harada F, Ueda T. Chemical modification of adenine residues in mouse 5S rRNA with monoperphthalate: the secondary structure of 5S rRNA. Nucleic Acids Symp Ser. 1983;(12):161-3. PubMed PMID: 6664852.

15: Holmberg L, Nygård O. Depurination of A4256 in 28 S rRNA by the ribosome-inactivating proteins from barley and ricin results in different ribosome conformations. J Mol Biol. 1996 May 31;259(1):81-94. PubMed PMID: 8648651.

16: Greber BJ. Mechanistic insight into eukaryotic 60S ribosomal subunit biogenesis by cryo-electron microscopy. RNA. 2016 Nov;22(11):1643-1662. Review. PubMed PMID: 27875256.

17: Pieler T, Digweed M, Bartsch M, Erdmann VA. Comparative structural analysis of cytoplasmic and chloroplastic 5S rRNA from spinach. Nucleic Acids Res. 1983 Feb 11;11(3):591-604. PubMed PMID: 6340063; PubMed Central PMCID: PMC325739.

18: Pace B, Matthews EA, Johnson KD, Cantor CR, Pace NR. Conserved 5S rRNA complement to tRNA is not required for protein synthesis. Proc Natl Acad Sci U S A. 1982 Jan;79(1):36-40. PubMed PMID: 6798570; PubMed Central PMCID: PMC345656.

19: Kumagai I, Bartsch M, Subramanian AR, Erdmann VA. Chemical modification of 5S and 4.5S rRNAs in situ in spinach chloroplast ribosomes. Nucleic Acids Symp Ser. 1983;(12):159-60. PubMed PMID: 6664851.

20: Qin H, Chen X, Tang Y, Hou H, Sheng R, Shen J. Modified method for the extraction of mRNA from paddy soils. Biotechnol Lett. 2016 Dec;38(12):2163-2167. PubMed PMID: 27627898.