Alsterpaullone
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 206619

CAS#: 237430-03-4

Description: Alsterpaullone, also known as 9-Nitropaullone and NSC 705701, is a derivative of kenpaullone and an ATP-competitive inhibitor of several cyclin-dependent kinases (CDKs) as well as glycogen synthase kinase 3β (GSK3β). Alsterpaullone induces apoptosis by activation of caspase-9 due to perturbation in mitochondrial membrane potential. Alsterpaullone mediated toxicity in HeLa Cells through Apoptosis-Inducing Effect.


Chemical Structure

img
Alsterpaullone
CAS# 237430-03-4

Theoretical Analysis

MedKoo Cat#: 206619
Name: Alsterpaullone
CAS#: 237430-03-4
Chemical Formula: C16H11N3O3
Exact Mass: 293.08
Molecular Weight: 293.282
Elemental Analysis: C, 65.53; H, 3.78; N, 14.33; O, 16.37

Price and Availability

Size Price Availability Quantity
50.0mg USD 550.0 2 Weeks
100.0mg USD 950.0 2 Weeks
200.0mg USD 1650.0 2 Weeks
500.0mg USD 2450.0 2 Weeks
1.0g USD 3450.0 2 Weeks
2.0g USD 5850.0 2 Weeks
Bulk inquiry

Synonym: 9-Nitropaullone; NSC 705701; NSC705701; NSC-705701; Alsterpaullone

IUPAC/Chemical Name: 7,12-dihydro-9-nitro-indolo[3,2-d][1]benzazepin-6(5H)-one

InChi Key: OLUKILHGKRVDCT-UHFFFAOYSA-N

InChi Code: InChI=1S/C16H11N3O3/c20-15-8-12-11-7-9(19(21)22)5-6-14(11)18-16(12)10-3-1-2-4-13(10)17-15/h1-7,18H,8H2,(H,17,20)

SMILES Code: O=C1NC2=CC=CC=C2C(NC3=C4C=C([N+]([O-])=O)C=C3)=C4C1

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Product Data:

Biological target: Alsterpaullone (9-Nitropaullone) is a CDK inhibitor, with IC50s of 35 nM, 15 nM, 200 nM and 40 nM for CDK1/cyclin B, CDK2/cyclin A, CDK2/cyclin E and CDK5/p35, respectively. Alsterpaullone also competes with ATP for binding to GSK-3alpha/GSK-3beta with IC50s of both 4 nM.
In vitro activity: The MTT assay indicated that MPP+ induced a dose-dependent decrease of the cell viability, and the cell viability decreased almost 45% at an exposure to 500 μM MPP+ (Figure 1A). However, the cell viability of SH-SY5Y cells exhibited an increase when cells were pretreated with various concentrations of Als (Alsterpaullone) (0.5, 1.0, 2.0 μM) for 24 h before MPP+= treatment (Figure 1B). Moreover, Als (0.25 μM or 0.5 μM) was applied to SH-SY5Y cells treated with MPP+ and the cell viability was assessed 0 h, 12 h, 24 h or 48 h later. The results indicated that the decrease of cell viability induced by MPP+ could be abrogated by 0.5 μM and 24 h Als treatment (Supplementary Figure S1). Reference: Front Cell Neurosci. 2018; 12: 283. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127625/
In vivo activity: To analyze the in vivo effects of alsterpaullone, this study used a mouse model of EBV‐LPD. Viral DNA levels in the peripheral blood of the treatment group decreased compared with nontreated controls (Figure 4B). Moreover, the survival rate significantly increased following treatment with the inhibitor (Figure 4C). Tumor formation in the pancreas was suppressed by inhibitor treatment (Figure 4D). The H&E staining of tumor tissue sections showed a clear reduction in lymphocyte infiltration in inhibitor‐treated mice (Figure 4D). The EBV‐positive B cell infiltration was decreased in mice treated with the inhibitor (Figure 4D). BZLF1, a representative marker of lytic infection and the master key gene for promoting the lytic cycle, was detected in the tumor tissue of nontreated control mice (Figure 4D). These results indicated that the CDK inhibitor has an antitumor effect in an EBV‐LPD mouse model. Reference: Cancer Sci. 2020 Jan; 111(1): 279–287. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6942432/

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMSO 12.33 42.04
DMSO:PBS (pH 7.2) (1:1) 0.5 1.7
DMF 3.0 10.23

Preparing Stock Solutions

The following data is based on the product molecular weight 293.282 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol: 1. Wang J, Li Y, Gao L, Yan F, Gao G, Li L. GSK-3β Inhibitor Alsterpaullone Attenuates MPP+-Induced Cell Damage in a c-Myc-Dependent Manner in SH-SY5Y Cells. Front Cell Neurosci. 2018 Aug 30;12:283. doi: 10.3389/fncel.2018.00283. PMID: 30233322; PMCID: PMC6127625. 2. Faria CC, Agnihotri S, Mack SC, Golbourn BJ, Diaz RJ, Olsen S, Bryant M, Bebenek M, Wang X, Bertrand KC, Kushida M, Head R, Clark I, Dirks P, Smith CA, Taylor MD, Rutka JT. Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. Oncotarget. 2015 Aug 28;6(25):21718-29. doi: 10.18632/oncotarget.4304. PMID: 26061748; PMCID: PMC4673298. 3. Watanabe T, Sato Y, Masud HMAA, Takayama M, Matsuda H, Hara Y, Yanagi Y, Yoshida M, Goshima F, Murata T, Kimura H. Antitumor activity of cyclin-dependent kinase inhibitor alsterpaullone in Epstein-Barr virus-associated lymphoproliferative disorders. Cancer Sci. 2020 Jan;111(1):279-287. doi: 10.1111/cas.14241. Epub 2019 Dec 11. PMID: 31743514; PMCID: PMC6942432. 4. Yin P, Zheng N, Dong J, Xu C, Zhang X, Ding G. Alsterpaullone induces apoptosis of HepG2 cells via a p38 mitogen-activated protein kinase signaling pathway. Oncol Lett. 2019 Jan;17(1):1177-1183. doi: 10.3892/ol.2018.9700. Epub 2018 Nov 14. PMID: 30655881; PMCID: PMC6312958.
In vitro protocol: 1. Wang J, Li Y, Gao L, Yan F, Gao G, Li L. GSK-3β Inhibitor Alsterpaullone Attenuates MPP+-Induced Cell Damage in a c-Myc-Dependent Manner in SH-SY5Y Cells. Front Cell Neurosci. 2018 Aug 30;12:283. doi: 10.3389/fncel.2018.00283. PMID: 30233322; PMCID: PMC6127625. 2. Faria CC, Agnihotri S, Mack SC, Golbourn BJ, Diaz RJ, Olsen S, Bryant M, Bebenek M, Wang X, Bertrand KC, Kushida M, Head R, Clark I, Dirks P, Smith CA, Taylor MD, Rutka JT. Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. Oncotarget. 2015 Aug 28;6(25):21718-29. doi: 10.18632/oncotarget.4304. PMID: 26061748; PMCID: PMC4673298.
In vivo protocol: 1. Watanabe T, Sato Y, Masud HMAA, Takayama M, Matsuda H, Hara Y, Yanagi Y, Yoshida M, Goshima F, Murata T, Kimura H. Antitumor activity of cyclin-dependent kinase inhibitor alsterpaullone in Epstein-Barr virus-associated lymphoproliferative disorders. Cancer Sci. 2020 Jan;111(1):279-287. doi: 10.1111/cas.14241. Epub 2019 Dec 11. PMID: 31743514; PMCID: PMC6942432. 2. Yin P, Zheng N, Dong J, Xu C, Zhang X, Ding G. Alsterpaullone induces apoptosis of HepG2 cells via a p38 mitogen-activated protein kinase signaling pathway. Oncol Lett. 2019 Jan;17(1):1177-1183. doi: 10.3892/ol.2018.9700. Epub 2018 Nov 14. PMID: 30655881; PMCID: PMC6312958.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Faria CC, Agnihotri S, Mack SC, Golbourn BJ, Diaz RJ, Olsen S, Bryant M, Bebenek M, Wang X, Bertrand KC, Kushida M, Head R, Clark I, Dirks P, Smith CA, Taylor MD, Rutka JT. Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. Oncotarget. 2015 Aug 28;6(25):21718-29. PubMed PMID: 26061748; PubMed Central PMCID: PMC4673298.

2: Walters BJ, Lin W, Diao S, Brimble M, Iconaru LI, Dearman J, Goktug A, Chen T, Zuo J. High-throughput screening reveals alsterpaullone, 2-cyanoethyl as a potent p27Kip1 transcriptional inhibitor. PLoS One. 2014 Mar 19;9(3):e91173. doi: 10.1371/journal.pone.0091173. eCollection 2014. PubMed PMID: 24646893; PubMed Central PMCID: PMC3960108.

3: Cui C, Wang Y, Wang Y, Zhao M, Peng S. Alsterpaullone, a Cyclin-Dependent Kinase Inhibitor, Mediated Toxicity in HeLa Cells through Apoptosis-Inducing Effect. J Anal Methods Chem. 2013;2013:602091. doi: 10.1155/2013/602091. Epub 2013 Mar 12. PubMed PMID: 23577282; PubMed Central PMCID: PMC3610382.

4: Trevino M, Stefanik DJ, Rodriguez R, Harmon S, Burton PM. Induction of canonical Wnt signaling by alsterpaullone is sufficient for oral tissue fate during regeneration and embryogenesis in Nematostella vectensis. Dev Dyn. 2011 Dec;240(12):2673-9. doi: 10.1002/dvdy.22774. Epub 2011 Nov 2. PubMed PMID: 22052821; PubMed Central PMCID: PMC3672222.

5: Kunick C, Zeng Z, Gussio R, Zaharevitz D, Leost M, Totzke F, Schächtele C, Kubbutat MH, Meijer L, Lemcke T. Structure-aided optimization of kinase inhibitors derived from alsterpaullone. Chembiochem. 2005 Mar;6(3):541-9. PubMed PMID: 15696597.

6: Greenwald RB, Zhao H, Xia J, Wu D, Nervi S, Stinson SF, Majerova E, Bramhall C, Zaharevitz DW. Poly(ethylene glycol) prodrugs of the CDK inhibitor, alsterpaullone (NSC 705701): synthesis and pharmacokinetic studies. Bioconjug Chem. 2004 Sep-Oct;15(5):1076-83. PubMed PMID: 15366962.

7: Soni DV, Jacobberger JW. Inhibition of cdk1 by alsterpaullone and thioflavopiridol correlates with increased transit time from mid G2 through prophase. Cell Cycle. 2004 Mar;3(3):349-57. Epub 2004 Mar 1. PubMed PMID: 14726692.

8: Lahusen T, De Siervi A, Kunick C, Senderowicz AM. Alsterpaullone, a novel cyclin-dependent kinase inhibitor, induces apoptosis by activation of caspase-9 due to perturbation in mitochondrial membrane potential. Mol Carcinog. 2003 Apr;36(4):183-94. PubMed PMID: 12669310.