Sulforaphane
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 202713

CAS#: 4478-93-7

Description: Sulforaphane is a naturally-occurring phytochemical belonging to the class of isothiocyanates. As the aglycone metabolite of glucosinolate glucoraphanin (sulforaphane glucosinolate), sulforaphane acts as an antioxidant and potent stimulator of endogenous detoxifying enzymes. This agent displays anticarcinogenic properties due to its ability to induce phase II detoxification enzymes, such as glutathione S-transferase and quinone reductase, thereby providing protection against certain carcinogens and toxic, reactive oxygen species. Broccoli sprouts contain large amounts of sulforaphane, which is also found in other cruciferous vegetables including cabbage and kale.


Price and Availability

Size
Price

250mg
USD 550
2g
USD 1950
Size
Price

500mg
USD 850
10g
USD 3850
Size
Price

1g
USD 1450

Sulforaphane, purity > 98%, is in stock. Current shipping out time is about 2 weeks after order is received. CoA, QC data and MSDS documents are available in one week after order is received.


Chemical Structure

img

Theoretical Analysis

MedKoo Cat#: 202713
Name: Sulforaphane
CAS#: 4478-93-7
Chemical Formula: C6H11NOS2
Exact Mass: 177.02821
Molecular Weight: 177.29
Elemental Analysis: C, 40.65; H, 6.25; N, 7.90; O, 9.02; S, 36.17


Synonym: sulforaphane. Broccoli sprout extracts, 4-methyl-sulfinybutyl isothiocyanatel; Sulforafan.

IUPAC/Chemical Name: 1-isothiocyanato-4-(methylsulfinyl)butane

InChi Key: SUVMJBTUFCVSAD-UHFFFAOYSA-N

InChi Code: InChI=1S/C6H11NOS2/c1-10(8)5-3-2-4-7-6-9/h2-5H2,1H3

SMILES Code: O=S(CCCCN=C=S)C


Technical Data

Appearance:
Yellow to brown oil

Purity:
>98% (or refer to the Certificate of Analysis)

Shipping Condition:
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition:
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility:
Soluble in DMSO, not in water

Shelf Life:
>5 years if stored properly

Drug Formulation:
This drug may be formulated in DMSO

Stock Solution Storage:
0 - 4 C for short term (days to weeks), or -20 C for long term (months).

Harmonized System Code:
293490


Additional Information

Sulforaphane exhibits anticancer, antidiabetic, and antimicrobial properties in experimental models. It is obtained from cruciferous vegetables such as broccoli, Brussels sprouts or cabbages. The enzyme myrosinase transforms glucoraphanin, a glucosinolate, into sulforaphane upon damage to the plant (such as from chewing). Young sprouts of broccoli and cauliflower are particularly rich in glucoraphanin. [source: http://en.wikipedia.org/wiki/Sulforaphane]

 
 


References

1: Sharma R, Sharma A, Chaudhary P, Sahu M, Jaiswal S, Awasthi S, Awasthi YC. Role of 4-hydroxynonenal in chemopreventive activities of sulforaphane. Free Radic Biol Med. 2012 Jun 1-15;52(11-12):2177-85. doi: 10.1016/j.freeradbiomed.2012.04.012. Epub 2012 Apr 23. Review. PubMed PMID: 22579574; PubMed Central PMCID: PMC3377772.

2: Liang H, Yuan Q. Natural sulforaphane as a functional chemopreventive agent: including a review of isolation, purification and analysis methods. Crit Rev Biotechnol. 2012 Sep;32(3):218-34. doi: 10.3109/07388551.2011.604838. Epub 2011 Sep 27. Review. PubMed PMID: 21942647.

3: Keum YS. Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications. Ann N Y Acad Sci. 2011 Jul;1229:184-9. doi: 10.1111/j.1749-6632.2011.06092.x. Review. PubMed PMID: 21793854.

4: Kaminski BM, Steinhilber D, Stein JM, Ulrich S. Phytochemicals resveratrol and sulforaphane as potential agents for enhancing the anti-tumor activities of conventional cancer therapies. Curr Pharm Biotechnol. 2012 Jan;13(1):137-46. Review. PubMed PMID: 21466425.

5: Tomczyk J, Olejnik A. [Sulforaphane--a possible agent in prevention and therapy of cancer]. Postepy Hig Med Dosw (Online). 2010 Nov 29;64:590-603. Review. Polish. PubMed PMID: 21160094.

6: Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol. 2012 Jul;64(5):503-8. doi: 10.1016/j.etp.2010.11.005. Epub 2010 Dec 3. Review. PubMed PMID: 21129940.

7: Cheung KL, Kong AN. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J. 2010 Mar;12(1):87-97. doi: 10.1208/s12248-009-9162-8. Epub 2009 Dec 15. Review. PubMed PMID: 20013083; PubMed Central PMCID: PMC2811646.

8: Nian H, Delage B, Ho E, Dashwood RH. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen. 2009 Apr;50(3):213-21. doi: 10.1002/em.20454. Review. PubMed PMID: 19197985; PubMed Central PMCID: PMC2701665.

9: Fimognari C, Lenzi M, Hrelia P. Interaction of the isothiocyanate sulforaphane with drug disposition and metabolism: pharmacological and toxicological implications. Curr Drug Metab. 2008 Sep;9(7):668-78. Review. PubMed PMID: 18781917.

10: Dashwood RH, Ho E. Dietary agents as histone deacetylase inhibitors: sulforaphane and structurally related isothiocyanates. Nutr Rev. 2008 Aug;66 Suppl 1:S36-8. doi: 10.1111/j.1753-4887.2008.00065.x. Review. PubMed PMID: 18673487; PubMed Central PMCID: PMC2656672.

11: Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008 Oct 8;269(2):291-304. doi: 10.1016/j.canlet.2008.04.018. Epub 2008 May 27. Review. PubMed PMID: 18504070; PubMed Central PMCID: PMC2579766.

12: Zhang Y, Tang L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin. 2007 Sep;28(9):1343-54. Review. PubMed PMID: 17723168.

13: Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci. 2007 May;64(9):1105-27. Review. PubMed PMID: 17396224.

14: Fimognari C, Hrelia P. Sulforaphane as a promising molecule for fighting cancer. Mutat Res. 2007 May-Jun;635(2-3):90-104. Epub 2006 Nov 28. Review. PubMed PMID: 17134937.

15: Brigelius-Flohé R, Banning A. Part of the series: from dietary antioxidants to regulators in cellular signaling and gene regulation. Sulforaphane and selenium, partners in adaptive response and prevention of cancer. Free Radic Res. 2006 Aug;40(8):775-87. Review. PubMed PMID: 17015256.

16: Myzak MC, Dashwood RH. Histone deacetylases as targets for dietary cancer preventive agents: lessons learned with butyrate, diallyl disulfide, and sulforaphane. Curr Drug Targets. 2006 Apr;7(4):443-52. Review. PubMed PMID: 16611031.

17: Gamet-Payrastre L. Signaling pathways and intracellular targets of sulforaphane mediating cell cycle arrest and apoptosis. Curr Cancer Drug Targets. 2006 Mar;6(2):135-45. Review. PubMed PMID: 16529543.

18: Myzak MC, Dashwood RH. Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett. 2006 Feb 28;233(2):208-18. Review. PubMed PMID: 16520150; PubMed Central PMCID: PMC2276573.

19: Gills JJ, Jeffery EH, Matusheski NV, Moon RC, Lantvit DD, Pezzuto JM. Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett. 2006 May 8;236(1):72-9. Epub 2005 Jul 1. Review. PubMed PMID: 15993536.

20: Fahey JW, Talalay P. Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol. 1999 Sep-Oct;37(9-10):973-9. Review. PubMed PMID: 10541453.