Bromo-PADAP
new
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 556368

CAS#: 14337-53-2

Description: Bromo-PADAP is a dye agent for research use. Bromo-PADAP was reported for the spectrophotometric determination of uranium(VI). Bromo-PADAP is highly sensitive towards uranium, the uranyl complex having a molar absorptivity of 74,000 at 578 nm and pH 7.6. In the presence of a mixed masking solution only a few ions interfere seriously, and the method can be made specific for uranium by a preliminary extraction of uranium into tri-n-octylphosphine oxide, and direct development of the bromo-PADAP colour in the organic phase. Details are given for the determination of uranium in waters, ores, phosphoric acid and phosphate rocks, thorium oxide, and zirconium oxide.


Chemical Structure

img
Bromo-PADAP
CAS# 14337-53-2

Theoretical Analysis

MedKoo Cat#: 556368
Name: Bromo-PADAP
CAS#: 14337-53-2
Chemical Formula: C15H17BrN4O
Exact Mass: 348.06
Molecular Weight: 349.232
Elemental Analysis: C, 51.59; H, 4.91; Br, 22.88; N, 16.04; O, 4.58

Price and Availability

Size Price Availability Quantity
1g USD 350 2 Weeks
2g USD 550 2 Weeks
5g USD 1250 2 Weeks
Bulk inquiry

Synonym: Bromo-PADAP; 5-Br-PADAP; NSC-367081; NSC 367081; NSC367081; Cyto5G2; 5-Br-DEPAP; 5-Bromo-DEPAP; 5-Bromo-PADAP;

IUPAC/Chemical Name: 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol

InChi Key: HNVCXDAVEHOIBP-VHEBQXMUSA-N

InChi Code: InChI=1S/C15H17BrN4O/c1-3-20(4-2)12-6-7-13(14(21)9-12)18-19-15-8-5-11(16)10-17-15/h5-10,21H,3-4H2,1-2H3/b19-18+

SMILES Code: OC1=CC(N(CC)CC)=CC=C1/N=N/C2=NC=C(Br)C=C2

Appearance: To be determined

Purity: >97% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 -4 C for short term (days to weeks) or -20 C for long term(months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 349.23 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Felix CSA, Chagas AVB, de Jesus RF, Barbosa WT, Barbosa JDV, Ferreira SLC, Cerdà V. Synthesis and Application of a New Polymer with Imprinted Ions for the Preconcentration of Uranium in Natural Water Samples and Determination by Digital Imaging. Molecules. 2023 May 12;28(10):4065. doi: 10.3390/molecules28104065. PMID: 37241808; PMCID: PMC10221341.


2: Trindade JS, Lemos VA, Mata Cerqueira UMF, Novaes CG, Araujo SA, Bezerra MA. Multivariate optimization of a dispersive liquid-liquid microextraction method for determination of copper and manganese in coconut water by FAAS. Food Chem. 2021 Dec 15;365:130473. doi: 10.1016/j.foodchem.2021.130473. Epub 2021 Jun 26. PMID: 34237574.


3: Ferreira VJ, de Jesus MS, Dos Santos MC, Guedes WN, Lemos VA, Novaes CG, Costa FS, Pacheco CSV, da Silva EGP, Amorim FAC. Multivariate optimization of ultrasound-assisted liquid-liquid microextraction based on two solvents for cadmium preconcentration prior to determination by flame atomic absorption spectrometry. Anal Methods. 2021 Jan 21;13(2):267-273. doi: 10.1039/d0ay02030c. PMID: 33367355.


4: Kudo H, Maejima K, Hiruta Y, Citterio D. Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of Lactoferrin. SLAS Technol. 2020 Feb;25(1):47-57. doi: 10.1177/2472630319884031. Epub 2019 Oct 28. PMID: 31658890.


5: Santos AP, Dos Santos MJ, das Graças Andrade Korn M, Lemos VA. Determination of cadmium in bread and biscuit samples using ultrasound-assisted temperature- controlled ionic liquid microextraction. J Sci Food Agric. 2019 Aug 15;99(10):4609-4614. doi: 10.1002/jsfa.9700. Epub 2019 May 2. PMID: 30891758.


6: Naeemullah, Tuzen M. A new portable switchable hydrophilicity microextraction method for determination of vanadium in microsampling micropipette tip syringe system couple with ETAAS. Talanta. 2019 Mar 1;194:991-996. doi: 10.1016/j.talanta.2018.10.052. Epub 2018 Oct 17. PMID: 30609634.


7: Phansi P, Danchana K, Ferreira SLC, Cerdà V. Multisyringe flow injection analysis (MSFIA) for the automatic determination of total iron in wines. Food Chem. 2019 Mar 30;277:261-266. doi: 10.1016/j.foodchem.2018.10.115. Epub 2018 Oct 25. PMID: 30502143.


8: Felix CSA, Silva DG, Andrade HMC, Riatto VB, Victor MM, Ferreira SLC. An on- line system using ion-imprinted polymer for preconcentration and determination of bismuth in seawater employing atomic fluorescence spectrometry. Talanta. 2018 Jul 1;184:87-92. doi: 10.1016/j.talanta.2018.02.089. Epub 2018 Feb 26. PMID: 29674087.


9: Zhu Y, Hu X, Pan D, Han H, Lin M, Lu Y, Wang C, Zhu R. Speciation determination of iron and its spatial and seasonal distribution in coastal river. Sci Rep. 2018 Feb 7;8(1):2576. doi: 10.1038/s41598-018-20991-0. PMID: 29416105; PMCID: PMC5803190.


10: Khamirchi R, Hosseini-Bandegharaei A, Alahabadi A, Sivamani S, Rahmani-Sani A, Shahryari T, Anastopoulos I, Miri M, Tran HN. Adsorption property of Br- PADAP-impregnated multiwall carbon nanotubes towards uranium and its performance in the selective separation and determination of uranium in different environmental samples. Ecotoxicol Environ Saf. 2018 Apr 15;150:136-143. doi: 10.1016/j.ecoenv.2017.12.039. Epub 2017 Dec 19. PMID: 29272718.


11: de Oliveira E Silva AF, de Castro WV, de Andrade FP. Development of spectrophotometric method for iron determination in fortified wheat and maize flours. Food Chem. 2018 Mar 1;242:205-210. doi: 10.1016/j.foodchem.2017.08.110. Epub 2017 Sep 1. PMID: 29037679.


12: Zhang YJ, Cai Y, Yu YL, Wang JH. A miniature optical emission spectrometric system in a lab-on-valve for sensitive determination of cadmium. Anal Chim Acta. 2017 Jul 11;976:45-51. doi: 10.1016/j.aca.2017.04.055. Epub 2017 May 13. PMID: 28576317.


13: Hu L, Yan XW, Li Q, Zhang XJ, Shan D. Br-PADAP embedded in cellulose acetate electrospun nanofibers: Colorimetric sensor strips for visual uranyl recognition. J Hazard Mater. 2017 May 5;329:205-210. doi: 10.1016/j.jhazmat.2017.01.038. Epub 2017 Jan 23. PMID: 28178635.


14: Yang RQ, Xing Z, Zhou H. [Spectrophotometric Determination of the Amount of Zinc on the Imprint Left on Hands by Zinc Coatings with 5-Br-PADAP as the Chromogenic Reagent]. Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Dec;36(12):4017-20. Chinese. PMID: 30243267.


15: Chen QH, Wan YY, Li Q, Yao JX. [Determination of Cadmium in Shrimp and Shell Fish Samples by Coprecipitation Enrichment with Mn(Ⅱ)-5-Br-PADAP Flame Atomic Absorption Spectrometry]. Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Oct;36(10):3351-4. Chinese. PMID: 30246987.


16: Taher MA, Pourmohammad F, Fazelirad H. Column preconcentration and electrothermal atomic absorption spectrometric determination of rhodium in some food and standard samples. J Sep Sci. 2015 Dec;38(23):4153-8. doi: 10.1002/jssc.201500405. Epub 2015 Nov 17. PMID: 26574900.


17: Sabermahani F, Taher MA. Determination of ultra trace amounts of copper by a multi-injection technique of electrothermal atomic absorption spectrometry after using solid-phase extraction. J AOAC Int. 2014 Nov-Dec;97(6):1713-8. doi: 10.5740/jaoacint.12-168. PMID: 25632448.


18: Peng B, Shen Y, Gao Z, Zhou M, Ma Y, Zhao S. Determination of total iron in water and foods by dispersive liquid-liquid microextraction coupled with microvolume UV-vis spectrophotometry. Food Chem. 2015 Jun 1;176:288-93. doi: 10.1016/j.foodchem.2014.12.084. Epub 2014 Dec 30. PMID: 25624235.


19: Rocha DL, Machado MC, Melchert WR. A sensitive flow-based procedure for spectrophotometric speciation analysis of inorganic bromine in waters. Talanta. 2014 Nov;129:93-9. doi: 10.1016/j.talanta.2014.05.013. Epub 2014 May 16. PMID: 25127569.


20: Min XY, Zhang XH, Zhou QP, Hu XD, Liu PD, Zhang HQ. Development of serum zinc as a biological dosimeter in mice. Int J Radiat Biol. 2014 Oct;90(10):909-13. doi: 10.3109/09553002.2014.922718. Epub 2014 Jun 25. PMID: 24827851.