RapiFluor-MS

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 130101

CAS#: 1429047-69-7

Description: RapiFluor-MS is a highly sensitive glycosylamine labelling reagent for the detection of O-glycans.


Chemical Structure

img
RapiFluor-MS
CAS# 1429047-69-7

Theoretical Analysis

MedKoo Cat#: 130101
Name: RapiFluor-MS
CAS#: 1429047-69-7
Chemical Formula: C21H25N5O5
Exact Mass: 427.19
Molecular Weight: 427.460
Elemental Analysis: C, 59.01; H, 5.90; N, 16.38; O, 18.71

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: RapiFluor-MS; RapiFluorMS; RapiFluor MS; RFMS

IUPAC/Chemical Name: 2,5-Dioxopyrrolidin-1-yl (2-((2-(diethylamino)ethyl)carbamoyl)quinolin-6-yl)carbamate

InChi Key: BWBDAEIIXBEFSS-UHFFFAOYSA-N

InChi Code: InChI=1S/C21H25N5O5/c1-3-25(4-2)12-11-22-20(29)17-7-5-14-13-15(6-8-16(14)24-17)23-21(30)31-26-18(27)9-10-19(26)28/h5-8,13H,3-4,9-12H2,1-2H3,(H,22,29)(H,23,30)

SMILES Code: O=C(ON1C(CCC1=O)=O)NC2=CC=C3N=C(C(NCCN(CC)CC)=O)C=CC3=C2

Appearance: To be determined

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 427.46 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1. Shipman J, Sommers C, Keire DA, Chen K, Zhu H. Comprehensive N-Glycan Mapping using Parallel Reaction Monitoring LC-MS/MS. Pharm Res. 2022 Dec 13. doi: 10.1007/s11095-022-03453-1. Epub ahead of print. PMID: 36513905.

2. Deriš H, Cindrić A, Lauber M, Petrović T, Bielik A, Taron CH, van Wingerden M, Lauc G, Trbojević-Akmačić I. Robustness and repeatability of GlycoWorks RapiFluor-MS IgG N-glycan profiling in a long-term high-throughput glycomic study. Glycobiology. 2021 Sep 20;31(9):1062-1067. doi: 10.1093/glycob/cwab050. PMID: 34132802.

3. Upton R, Duffy J, Clawson S, Firth D. Evaluating N-Glycosylation of a Therapeutic Monoclonal Antibody Using UHPLC-FLR-MS with RapiFluor-MS Labeling. Methods Mol Biol. 2021;2271:189-203. doi: 10.1007/978-1-0716-1241-5_14. PMID: 33908009.

4. Helali Y, Sharma S, Vandeput M, Welba D, Van Antwerpen P, Marchant A, Delporte C. Fc Glycosylation Characterization of Human Immunoglobulins G Using Immunocapture and LC-MS. Methods Mol Biol. 2021;2271:57-71. doi: 10.1007/978-1-0716-1241-5_4. PMID: 33907999.

5. Pallister EG, Choo MSF, Walsh I, Tai JN, Tay SJ, Yang YS, Ng SK, Rudd PM, Flitsch SL, Nguyen-Khuong T. Utility of Ion-Mobility Spectrometry for Deducing Branching of Multiply Charged Glycans and Glycopeptides in a High-Throughput Positive ion LC-FLR-IMS-MS Workflow. Anal Chem. 2020 Dec 1;92(23):15323-15335. doi: 10.1021/acs.analchem.0c01954. Epub 2020 Nov 9. PMID: 33166117.

6. Messina A, Palmigiano A, Esposito F, Fiumara A, Bordugo A, Barone R, Sturiale L, Jaeken J, Garozzo D. HILIC-UPLC-MS for high throughput and isomeric N-glycan separation and characterization in Congenital Disorders Glycosylation and human diseases. Glycoconj J. 2021 Apr;38(2):201-211. doi: 10.1007/s10719-020-09947-7. Epub 2020 Sep 11. PMID: 32915358.

7. Szabo Z, Khan SH, Widdowson PJ, Reusch D, Viner R, Carillo S, Huhmer A, Bones J. A streamlined workflow for twoplexing of N-linked glycan analysis using light (12C6) and heavy (13C6) isotopologues of 3-aminobenzenesulfonic acid. Anal Chim Acta. 2020 Feb 22;1099:155-164. doi: 10.1016/j.aca.2019.11.055. Epub 2019 Nov 26. PMID: 31986272.

8. Keser T, Pavić T, Lauc G, Gornik O. Comparison of 2-Aminobenzamide, Procainamide and RapiFluor-MS as Derivatizing Agents for High-Throughput HILIC-UPLC-FLR-MS N-glycan Analysis. Front Chem. 2018 Jul 26;6:324. doi: 10.3389/fchem.2018.00324. PMID: 30094234; PMCID: PMC6070730.

9. Vainauskas S, Kirk CH, Petralia L, Guthrie EP, McLeod E, Bielik A, Luebbers A, Foster JM, Hokke CH, Rudd PM, Shi X, Taron CH. A novel broad specificity fucosidase capable of core α1-6 fucose release from N-glycans labeled with urea-linked fluorescent dyes. Sci Rep. 2018 Jun 22;8(1):9504. doi: 10.1038/s41598-018-27797-0. PMID: 29934601; PMCID: PMC6015026.

10. Reed CE, Fournier J, Vamvoukas N, Koza SM. Automated Preparation of MS-Sensitive Fluorescently Labeled N-Glycans with a Commercial Pipetting Robot. SLAS Technol. 2018 Dec;23(6):550-559. doi: 10.1177/2472630318762384. Epub 2018 Apr 4. PMID: 29618278; PMCID: PMC6249649.

11. Zhou S, Veillon L, Dong X, Huang Y, Mechref Y. Direct comparison of derivatization strategies for LC-MS/MS analysis of N-glycans. Analyst. 2017 Nov 20;142(23):4446-4455. doi: 10.1039/c7an01262d. PMID: 29085933; PMCID: PMC5696090.

12. Hilliard M, Alley WR Jr, McManus CA, Yu YQ, Hallinan S, Gebler J, Rudd PM. Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: From sample preparation to data analysis. MAbs. 2017 Nov/Dec;9(8):1349-1359. doi: 10.1080/19420862.2017.1377381. Epub 2017 Sep 12. PMID: 28895795; PMCID: PMC5680791.

13. Furuki K, Toyo'oka T, Ban K. Highly sensitive glycosylamine labelling of O-glycans using non-reductive β-elimination. Anal Bioanal Chem. 2017 Mar;409(9):2269-2283. doi: 10.1007/s00216-016-0171-z. Epub 2017 Jan 14. PMID: 28091715.