3,3′-Dipropylthiadicarbocyanine (I)
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 112008

CAS#: 53213-94-8

Description: 3,3′-Dipropylthiadicarbocyanine (diSC3(5)) is a fluorescent dye that has been used to monitor cell membrane potential. It displays excitation/emission maxima of 622/670 nm, respectively, and, upon cell hyperpolarization, it enters cells, and exhibits a shift in emission maxima to 688 nm and a decrease in fluorescence intensity. When the cell membrane is depolarized, the fluorescence intensity of diSC3(5) increases as it exits the cells. However, diSC3(5) (3 µM) also induces membrane hyperpolarization, increases intracellular sodium levels, and decreases intracellular potassium levels in Ehrlich ascites tumor cells, as well as increases potassium membrane permeability by 64.6% in Ehrlich ascites tumor cells in the presence of the Na+/K+-ATPase inhibitor ouabain. It also reduces cellular ATP levels in the absence of glucose and induces acid production and inhibits oxygen consumption in the presence of glucose in Ehrlich ascites tumor cells when used at a concentration of 3 µM.


Chemical Structure

img
3,3′-Dipropylthiadicarbocyanine (I)
CAS# 53213-94-8

Theoretical Analysis

MedKoo Cat#: 112008
Name: 3,3′-Dipropylthiadicarbocyanine (I)
CAS#: 53213-94-8
Chemical Formula: C25H27IN2S2
Exact Mass: 0.00
Molecular Weight: 546.530
Elemental Analysis: C, 54.94; H, 4.98; I, 23.22; N, 5.13; S, 11.73

Price and Availability

Size Price Availability Quantity
25mg USD 250 2 Weeks
50mg USD 500 2 Weeks
100mg USD 770 2 Weeks
250mg USD 1200 2 Weeks
Bulk inquiry

Synonym: DiS-C3-(5); DiSC3(5); DiSC3 (5); 3,3′-Dipropylthiadicarbocyanine iodide; 3,3′Dipropylthiadicarbocyanine (I); 3,3′ Dipropylthiadicarbocyanine (I); 3,3′-Dipropylthiadicarbocyanine (I); 3,3′ Dipropylthiadicarbocyanine I; 3,3′-Dipropylthiadicarbocyanine I; 3,3′Dipropylthiadicarbocyanine I

IUPAC/Chemical Name: 3-propyl-2-((1E,3E,5E)-5-(3-propylbenzo[d]thiazol-2(3H)-ylidene)penta-1,3-dien-1-yl)benzo[d]thiazol-3-ium iodide

InChi Key: GDEURKKLNUGTDA-UHFFFAOYSA-M

InChi Code: InChI=1S/C25H27N2S2.HI/c1-3-18-26-20-12-8-10-14-22(20)28-24(26)16-6-5-7-17-25-27(19-4-2)21-13-9-11-15-23(21)29-25;/h5-17H,3-4,18-19H2,1-2H3;1H/q+1;/p-1

SMILES Code: CCCN(/C(S1)=C\C=C\C=C\C2=[N+](CCC)C(C=CC=C3)=C3S2)C4=C1C=CC=C4.[I-]

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMSO 2.0 3.66

Preparing Stock Solutions

The following data is based on the product molecular weight 546.53 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Feng Z, Luo J, Lyu X, Chen Y, Zhang L. Selective antibacterial activity of a novel lactotransferrin-derived antimicrobial peptide LF-1 against Streptococcus mutans. Arch Oral Biol. 2022 Jul;139:105446. doi: 10.1016/j.archoralbio.2022.105446. Epub 2022 Apr 26. PMID: 35512618.


2: Liu Y, Ma A, Han P, Chen Z, Jia Y. Antibacterial mechanism of brevilaterin B: an amphiphilic lipopeptide targeting the membrane of Listeria monocytogenes. Appl Microbiol Biotechnol. 2020 Dec;104(24):10531-10539. doi: 10.1007/s00253-020-10993-2. Epub 2020 Nov 10. PMID: 33170327.


3: Boix-Lemonche G, Lekka M, Skerlavaj B. A Rapid Fluorescence-Based Microplate Assay to Investigate the Interaction of Membrane Active Antimicrobial Peptides with Whole Gram-Positive Bacteria. Antibiotics (Basel). 2020 Feb 19;9(2):92. doi: 10.3390/antibiotics9020092. PMID: 32093104; PMCID: PMC7168298.


4: Kwon JY, Kim MK, Mereuta L, Seo CH, Luchian T, Park Y. Mechanism of action of antimicrobial peptide P5 truncations against Pseudomonas aeruginosa and Staphylococcus aureus. AMB Express. 2019 Jul 30;9(1):122. doi: 10.1186/s13568-019-0843-0. PMID: 31363941; PMCID: PMC6667604.


5: Ning Y, Yan A, Yang K, Wang Z, Li X, Jia Y. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms. Food Chem. 2017 Aug 1;228:533-540. doi: 10.1016/j.foodchem.2017.01.112. Epub 2017 Jan 25. PMID: 28317760.


6: Taniguchi M, Ochiai A, Takahashi K, Nakamichi S, Nomoto T, Saitoh E, Kato T, Tanaka T. Antimicrobial activity and mechanism of action of a novel cationic α-helical octadecapeptide derived from α-amylase of rice. Biopolymers. 2015 Mar;104(2):73-83. doi: 10.1002/bip.22605. PMID: 25581614.


7: Liang W, He S, Fang J. Self-assembly of J-aggregate nanotubes and their applications for sensing dopamine. Langmuir. 2014 Jan 28;30(3):805-11. doi: 10.1021/la404022q. Epub 2014 Jan 14. PMID: 24397785.


8: Shchepinova MM, Denisov SS, Kotova EA, Khailova LS, Knorre DA, Korshunova GA, Tashlitsky VN, Severin FF, Antonenko YN. Dodecyl and octyl esters of fluorescein as protonophores and uncouplers of oxidative phosphorylation in mitochondria at submicromolar concentrations. Biochim Biophys Acta. 2014 Jan;1837(1):149-58. doi: 10.1016/j.bbabio.2013.09.011. Epub 2013 Sep 27. PMID: 24076107.


9: Taniguchi M, Ikeda A, Nakamichi S, Ishiyama Y, Saitoh E, Kato T, Ochiai A, Tanaka T. Antimicrobial activity and mechanism of action of a novel cationic α-helical octadecapeptide derived from heat shock protein 70 of rice. Peptides. 2013 Oct;48:147-55. doi: 10.1016/j.peptides.2013.08.011. Epub 2013 Aug 21. PMID: 23973864.


10: Dzoyem JP, Hamamoto H, Ngameni B, Ngadjui BT, Sekimizu K. Antimicrobial action mechanism of flavonoids from Dorstenia species. Drug Discov Ther. 2013 Apr;7(2):66-72. PMID: 23715504.


11: Takei N, Takahashi N, Takayanagi T, Ikeda A, Hashimoto K, Takagi M, Hamada T, Saitoh E, Ochiai A, Tanaka T, Taniguchi M. Antimicrobial activity and mechanism of action of a novel cationic α-helical dodecapeptide, a partial sequence of cyanate lyase from rice. Peptides. 2013 Apr;42:55-62. doi: 10.1016/j.peptides.2012.12.015. Epub 2012 Dec 25. PMID: 23270672.


12: Cho J, Choi H, Lee J, Kim MS, Sohn HY, Lee DG. The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica. Biochim Biophys Acta. 2013 Mar;1828(3):1153-8. doi: 10.1016/j.bbamem.2012.12.010. Epub 2012 Dec 21. PMID: 23262192.


13: Cho J, Choi H, Lee DG. Influence of the N- and C-terminal regions of antimicrobial peptide pleurocidin on antibacterial activity. J Microbiol Biotechnol. 2012 Oct;22(10):1367-74. doi: 10.4014/jmb.1205.05040. PMID: 23075787.


14: Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Trendeleva TA, Lyamzaev KG, Antonenko YN, Rogov AG, Zvyagilskaya RA, Skulachev VP, Chernyak BV. Derivatives of the cationic plant alkaloids berberine and palmatine amplify protonophorous activity of fatty acids in model membranes and mitochondria. Mitochondrion. 2013 Sep;13(5):520-5. doi: 10.1016/j.mito.2012.09.006. Epub 2012 Sep 29. PMID: 23026390.


15: Choi H, Cho J, Jin Q, Woo ER, Lee DG. Antifungal property of dihydrodehydrodiconiferyl alcohol 9'-O-beta-D-glucoside and its pore-forming action in plasma membrane of Candida albicans. Biochim Biophys Acta. 2012 Jul;1818(7):1648-55. doi: 10.1016/j.bbamem.2012.02.026. PMID: 22406553.


16: Lee J, Choi H, Cho J, Lee DG. Effects of positively charged arginine residues on membrane pore forming activity of Rev-NIS peptide in bacterial cells. Biochim Biophys Acta. 2011 Oct;1808(10):2421-7. doi: 10.1016/j.bbamem.2011.06.024. Epub 2011 Jul 6. PMID: 21762675.


17: Chehimi S, Pons AM, Sablé S, Hajlaoui MR, Limam F. Mode of action of thuricin S, a new class IId bacteriocin from Bacillus thuringiensis. Can J Microbiol. 2010 Feb;56(2):162-7. doi: 10.1139/w09-125. PMID: 20237578.


18: Maruyama M, Yamauchi S, Akiyama K, Sugahara T, Kishida T, Koba Y. Antibacterial activity of a virgatusin-related compound. Biosci Biotechnol Biochem. 2007 Mar;71(3):677-80. doi: 10.1271/bbb.60429. Epub 2007 Mar 7. PMID: 17341839.


19: Gonçalves C, Vachon V, Schwartz JL, Dubreuil JD. The Escherichia coli enterotoxin STb permeabilizes piglet jejunal brush border membrane vesicles. Infect Immun. 2007 May;75(5):2208-13. doi: 10.1128/IAI.01829-06. Epub 2007 Feb 16. PMID: 17307947; PMCID: PMC1865759.


20: Kirouac M, Vachon V, Rivest S, Schwartz JL, Laprade R. Analysis of the properties of Bacillus thuringiensis insecticidal toxins using a potential- sensitive fluorescent probe. J Membr Biol. 2003 Nov 1;196(1):51-9. doi: 10.1007/s00232-003-0624-0. PMID: 14724756.