GlyH-101
new
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 510335

CAS#: 328541-79-3

Description: GlyH-101 is a CFTR inhibitor (cystic fibrosis transmembrane conductance regulator). GlyH-101 is a glycine hydrazide that has been shown to block CFTR channels. GlyH-101 blocked I(Cl.PKA) in a concentration- and voltage-dependent fashion (IC(50) at +100 mV=0.3 ± 1.5 μM and at -100 mV=5.1 ± 1.3 μM). GlyH-101 blocks the open pore of cardiac CFTR channels at an electrical distance of 0.15 ± 0.03 from the external membrane surface.


Price and Availability

Size
Price

10mg
USD 120
100mg
USD 450
1g
USD 1850
Size
Price

25mg
USD 150
200mg
USD 750
2g
USD 2850
Size
Price

50mg
USD 250
500mg
USD 1250
5g
Ask price

GlyH-101, purity > 98%, is in stock. Current shipping out time is about 2 weeks after order is received. CoA, QC data and MSDS documents are available in one week after order is received.


Chemical Structure

img

Theoretical Analysis

MedKoo Cat#: 510335
Name: GlyH-101
CAS#: 328541-79-3
Chemical Formula: C19H15Br2N3O3
Exact Mass: 490.94802
Molecular Weight: 493.15
Elemental Analysis: C, 46.27; H, 3.07; Br, 32.41; N, 8.52; O, 9.73


Synonym: GlyH101; GlyH 101; GlyH-101.

IUPAC/Chemical Name: (E)-N'-(3,5-dibromo-2,4-dihydroxybenzylidene)-2-(naphthalen-2-ylamino)acetohydrazide

InChi Key: RMBDLOATEPYBSI-NUGSKGIGSA-N

InChi Code: InChI=1S/C19H15Br2N3O3/c20-15-8-13(18(26)17(21)19(15)27)9-23-24-16(25)10-22-14-6-5-11-3-1-2-4-12(11)7-14/h1-9,22,26-27H,10H2,(H,24,25)/b23-9+

SMILES Code: O=C(N/N=C/C1=C(O)C(Br)=C(O)C(Br)=C1)CNC2=CC3=CC=CC=C3C=C2


Technical Data

Appearance:
Solid powder

Purity:
>98% (or refer to the Certificate of Analysis)

Shipping Condition:
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition:
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility:
Soluble in DMSO, not in water

Shelf Life:
>2 years if stored properly

Drug Formulation:
This drug may be formulated in DMSO

Stock Solution Storage:
0 - 4 C for short term (days to weeks), or -20 C for long term (months).

Harmonized System Code:
293490


Additional Information

  
 
 
 


References

1: Melis N, Tauc M, Cougnon M, Bendahhou S, Giuliano S, Rubera I, Duranton C. Revisiting CFTR inhibition: a comparative study of CFTRinh -172 and GlyH-101 inhibitors. Br J Pharmacol. 2014 Aug;171(15):3716-27. doi: 10.1111/bph.12726. PubMed PMID: 24758416; PubMed Central PMCID: PMC4128068.

2: Norimatsu Y, Ivetac A, Alexander C, O'Donnell N, Frye L, Sansom MS, Dawson DC. Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator. Mol Pharmacol. 2012 Dec;82(6):1042-55. doi: 10.1124/mol.112.080267. Epub 2012 Aug 24. PubMed PMID: 22923500; PubMed Central PMCID: PMC3502623.

3: Sheppard DN. CFTR channel pharmacology: insight from a flock of clones. Focus on "Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101". Am J Physiol Cell Physiol. 2012 Jan 1;302(1):C24-6. doi: 10.1152/ajpcell.00376.2011. Epub 2011 Oct 12. PubMed PMID: 21998142.

4: Stahl M, Stahl K, Brubacher MB, Forrest JN Jr. Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101. Am J Physiol Cell Physiol. 2012 Jan 1;302(1):C67-76. doi: 10.1152/ajpcell.00225.2011. Epub 2011 Sep 21. PubMed PMID: 21940661; PubMed Central PMCID: PMC3328903.

5: Barman PP, Choisy SC, Gadeberg HC, Hancox JC, James AF. Cardiac ion channel current modulation by the CFTR inhibitor GlyH-101. Biochem Biophys Res Commun. 2011 Apr 29;408(1):12-7. doi: 10.1016/j.bbrc.2011.03.089. Epub 2011 Mar 31. PubMed PMID: 21439936.

6: Kelly M, Trudel S, Brouillard F, Bouillaud F, Colas J, Nguyen-Khoa T, Ollero M, Edelman A, Fritsch J. Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition. J Pharmacol Exp Ther. 2010 Apr;333(1):60-9. doi: 10.1124/jpet.109.162032. Epub 2010 Jan 5. PubMed PMID: 20051483.