Rhodamine 6G
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 561580

CAS#: 989-38-8

Description: Rhodamine 6G is a Rhodamine analog used in Pgp efflux assays and characterizing the kinetics of MRP1-mediated efflux. It is also utilized as a laser dye and potential mitochondrial probe.


Chemical Structure

img
Rhodamine 6G
CAS# 989-38-8

Theoretical Analysis

MedKoo Cat#: 561580
Name: Rhodamine 6G
CAS#: 989-38-8
Chemical Formula: C28H31ClN2O3
Exact Mass: 0.00
Molecular Weight: 479.010
Elemental Analysis: C, 70.21; H, 6.52; Cl, 7.40; N, 5.85; O, 10.02

Price and Availability

Size Price Availability Quantity
25g USD 170
100g USD 305
Bulk inquiry

Synonym: Rhodamine 6G; Rhodamine6G; Rhodamine-6G; Basic Red 1

IUPAC/Chemical Name: Ethyl 2-[3-(ethylamino)-6-ethylimino-2,7-dimethylxanthen-9-yl]benzoate hydrochloride

InChi Key: XFKVYXCRNATCOO-UHFFFAOYSA-M

InChi Code: InChI=1S/C28H31N2O3.ClH/c1-6-29-23-15-25-21(13-17(23)4)27(19-11-9-10-12-20(19)28(31)32-8-3)22-14-18(5)24(30-7-2)16-26(22)33-25;/h9-16,29-30H,6-8H2,1-5H3;1H/q+1;/p-1

SMILES Code: CC1=CC2=C(C3=C(C=C(C(C)=C3)NCC)[O+]=C2C=C1NCC)C4=CC=CC=C4C(OCC)=O.[Cl-]

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO and water

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO and water

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Product Data:
Biological target: Rhodamine-6G is a fluorescent dye binding to mitochondria, thus reducing the intact mitochondria number and inhibiting mitochondrial metabolic activity.
In vitro activity: Rhodamine-6G pre-treatment of LMTK cells permits the construction of transmitochondrial cybrid cell lines carrying a variety of mtDNAs, without the need for rho 0 cell lines. Reference: Somat Cell Mol Genet. 1996 Jan;22(1):81-5. https://pubmed.ncbi.nlm.nih.gov/8643997/
In vivo activity: This study concludes that malignant, but not normal, cells are selectively destroyed by low doses of Rhodamine-6G. They suggest that selective anti-tumor properties of Rhodamine-6G are based on unique physiologic differences in energy metabolism between malignant and normal cells. It is possible that low concentrations of Rhodamine-6G might be useful for replacing, or backing up, more aggressive nonselective chemotherapeutic compounds. Reference: Neoplasma. 2013;60(3):262-73. https://pubmed.ncbi.nlm.nih.gov/23373995/

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMSO 25.0 52.19
Water 10.0 20.88

Preparing Stock Solutions

The following data is based on the product molecular weight 479.01 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol: 1. Magut PK, Das S, Fernand VE, Losso J, McDonough K, Naylor BM, Aggarwal S, Warner IM. Tunable cytotoxicity of rhodamine 6G via anion variations. J Am Chem Soc. 2013 Oct 23;135(42):15873-9. doi: 10.1021/ja407164w. Epub 2013 Oct 8. PMID: 24059469; PMCID: PMC4197813. 2. Trounce I, Wallace DC. Production of transmitochondrial mouse cell lines by cybrid rescue of rhodamine-6G pre-treated L-cells. Somat Cell Mol Genet. 1996 Jan;22(1):81-5. doi: 10.1007/BF02374379. PMID: 8643997. 3. Kutushov M, Gorelik O. Low concentrations of Rhodamine-6G selectively destroy tumor cells and improve survival of melanoma transplanted mice. Neoplasma. 2013;60(3):262-73. doi: 10.4149/neo_2013_035. PMID: 23373995. 4. Li C, Feng X, Yang S, Xu H, Yin X, Yu Y. Capture, Detection, and Simultaneous Identification of Rare Circulating Tumor Cells Based on a Rhodamine 6G-Loaded Metal-Organic Framework. ACS Appl Mater Interfaces. 2021 Oct 28. doi: 10.1021/acsami.1c15838. Epub ahead of print. PMID: 34709779.
In vitro protocol: 1. Magut PK, Das S, Fernand VE, Losso J, McDonough K, Naylor BM, Aggarwal S, Warner IM. Tunable cytotoxicity of rhodamine 6G via anion variations. J Am Chem Soc. 2013 Oct 23;135(42):15873-9. doi: 10.1021/ja407164w. Epub 2013 Oct 8. PMID: 24059469; PMCID: PMC4197813. 2. Trounce I, Wallace DC. Production of transmitochondrial mouse cell lines by cybrid rescue of rhodamine-6G pre-treated L-cells. Somat Cell Mol Genet. 1996 Jan;22(1):81-5. doi: 10.1007/BF02374379. PMID: 8643997.
In vivo protocol: 1. Kutushov M, Gorelik O. Low concentrations of Rhodamine-6G selectively destroy tumor cells and improve survival of melanoma transplanted mice. Neoplasma. 2013;60(3):262-73. doi: 10.4149/neo_2013_035. PMID: 23373995. 2. Li C, Feng X, Yang S, Xu H, Yin X, Yu Y. Capture, Detection, and Simultaneous Identification of Rare Circulating Tumor Cells Based on a Rhodamine 6G-Loaded Metal-Organic Framework. ACS Appl Mater Interfaces. 2021 Oct 28. doi: 10.1021/acsami.1c15838. Epub ahead of print. PMID: 34709779.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Lin H, Yue Y, Maidana DE, Bouzika P, Atik A, Matsumoto H, Miller JW, Vavvas DG. Drug Delivery Nanoparticles: Toxicity Comparison in Retinal Pigment Epithelium and Retinal Vascular Endothelial Cells. Semin Ophthalmol. 2016;31(1-2):1-9. doi: 10.3109/08820538.2015.1114865. Review. PubMed PMID: 26959123; PubMed Central PMCID: PMC5405708.

2: Sonmez M, Georgescu M, Alexandrescu L, Gurau D, Ficai A, Ficai D, Andronescu E. SYNTHESIS AND APPLICATIONS OF Fe3O4/SiO2 CORE-SHELL MATERIALS. Curr Pharm Des. 2015;21(37):5324-35. Review. PubMed PMID: 26377652.

3: Shimizu N, Maekawa M, Asai S, Shimizu Y. Multicolor FISHs for simultaneous detection of genes and DNA segments on human chromosomes. Chromosome Res. 2015 Dec;23(4):649-62. doi: 10.1007/s10577-015-9473-9. Epub 2015 May 8. Review. PubMed PMID: 25947045.

4: Samanta A, Banerjee S, Liu Y. DNA nanotechnology for nanophotonic applications. Nanoscale. 2015 Feb 14;7(6):2210-20. doi: 10.1039/c4nr06283c. Review. PubMed PMID: 25592639.

5: Rejdak R, Oleszczuk A, Mańkowska A, Kiczyńska M, Zagórski Z, Zarnowski T. [Novelty of vital dyes in ophthalmic surgery]. Klin Oczna. 2010;112(4-6):151-5. Review. Polish. PubMed PMID: 20825072.

6: Alford R, Simpson HM, Duberman J, Hill GC, Ogawa M, Regino C, Kobayashi H, Choyke PL. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol Imaging. 2009 Dec;8(6):341-54. Review. PubMed PMID: 20003892.

7: Shi C, Zhang Y, Gu C, Chen B, Seballos L, Olson T, Zhang JZ. Molecular fiber sensors based on surface enhanced Raman scattering (SERS). J Nanosci Nanotechnol. 2009 Apr;9(4):2234-46. Review. PubMed PMID: 19437961.

8: Bacman SR, Moraes CT. Transmitochondrial technology in animal cells. Methods Cell Biol. 2007;80:503-24. Review. PubMed PMID: 17445711.

9: Trounce IA, Pinkert CA. Cybrid models of mtDNA disease and transmission, from cells to mice. Curr Top Dev Biol. 2007;77:157-83. Review. PubMed PMID: 17222703.

10: Eggeling C, Volkmer A, Seidel CA. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. Chemphyschem. 2005 May;6(5):791-804. Review. PubMed PMID: 15884061.

11: Hochberger J, Tex S, Maiss J, Hahn EG. Management of difficult common bile duct stones. Gastrointest Endosc Clin N Am. 2003 Oct;13(4):623-34. Review. PubMed PMID: 14986790.

12: Dietrich A, Buschmann V, Müller C, Sauer M. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. J Biotechnol. 2002 Jan;82(3):211-31. Review. PubMed PMID: 11999691.

13: Diaspro A, Chirico G, Federici F, Cannone F, Beretta S, Robello M. Two-photon microscopy and spectroscopy based on a compact confocal scanning head. J Biomed Opt. 2001 Jul;6(3):300-10. Review. PubMed PMID: 11516320.

14: Zander C. Single-molecular detection in solution: a new tool for analytical chemistry. Fresenius J Anal Chem. 2000 Mar-Apr;366(6-7):745-51. Review. PubMed PMID: 11225785.

15: Iro H, Zenk J, Waldfahrer F, Benzel W. [Current status of minimally invasive treatment methods in sialolithiasis]. HNO. 1996 Feb;44(2):78-84. Review. German. PubMed PMID: 8852804.

16: Hochberger J, Hahn EG, Ell C. [Laser lithotripsy in the treatment of bile duct calculi]. Ther Umsch. 1993 Aug;50(8):596-601. Review. German. PubMed PMID: 8211863.

17: Allman DS. Forensic Identification of Explosives by Mass Spectrometry and Allied Techniques. Forensic Sci Rev. 1991 Dec;3(2):83-9. Review. PubMed PMID: 26267158.

18: Menzel ER. Pretreatment of Latent Prints for Laser Development. Forensic Sci Rev. 1989 Jun;1(1):43-66. Review. PubMed PMID: 26266524.