Gibberellic acid
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 561578

CAS#: 77-06-5

Description: Gibberellic acid is a hormone found in plants and fungi that promotes the growth and elongation of cells.


Chemical Structure

img
Gibberellic acid
CAS# 77-06-5

Theoretical Analysis

MedKoo Cat#: 561578
Name: Gibberellic acid
CAS#: 77-06-5
Chemical Formula: C19H22O6
Exact Mass: 346.14
Molecular Weight: 346.370
Elemental Analysis: C, 65.88; H, 6.40; O, 27.71

Price and Availability

Size Price Availability Quantity
100mg USD 165
1g USD 290
5g USD 560
Bulk inquiry

Synonym: Gibberellic acid; Gibberellin A3; GA; GA3;

IUPAC/Chemical Name: (1S,2S,4aR,4bR,7S,9aS,10S,10aR)-2,7-dihydroxy-1-methyl-8-methylene-13-oxo-1,2,4b,5,6,7,8,9,10,10a-decahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[a]azulene-10-carboxylic acid

InChi Key: IXORZMNAPKEEDV-OBDJNFEBSA-N

InChi Code: InChI=1S/C19H22O6/c1-9-7-17-8-18(9,24)5-3-10(17)19-6-4-11(20)16(2,15(23)25-19)13(19)12(17)14(21)22/h4,6,10-13,20,24H,1,3,5,7-8H2,2H3,(H,21,22)/t10-,11+,12-,13-,16-,17+,18+,19-/m1/s1

SMILES Code: C[C@@]12[C@@H](O)C=C[C@]3(OC2=O)[C@@H]1[C@H](C(O)=O)[C@]45[C@H]3CC[C@](C(C5)=C)(O)C4

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 346.37 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Radhakrishnan R, Hashem A, Abd Allah EF. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front Physiol. 2017 Sep 6;8:667. doi: 10.3389/fphys.2017.00667. eCollection 2017. Review. PubMed PMID: 28932199; PubMed Central PMCID: PMC5592640.

2: Conti L. Hormonal control of the floral transition: Can one catch them all? Dev Biol. 2017 Oct 15;430(2):288-301. doi: 10.1016/j.ydbio.2017.03.024. Epub 2017 Mar 27. Review. PubMed PMID: 28351648.

3: Skubacz A, Daszkowska-Golec A, Szarejko I. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk. Front Plant Sci. 2016 Dec 16;7:1884. doi: 10.3389/fpls.2016.01884. eCollection 2016. Review. PubMed PMID: 28018412; PubMed Central PMCID: PMC5159420.

4: Smith AR, Zhao D. Sterility Caused by Floral Organ Degeneration and Abiotic Stresses in Arabidopsis and Cereal Grains. Front Plant Sci. 2016 Oct 14;7:1503. eCollection 2016. Review. PubMed PMID: 27790226; PubMed Central PMCID: PMC5064672.

5: Park HJ, Kim WY, Pardo JM, Yun DJ. Molecular Interactions Between Flowering Time and Abiotic Stress Pathways. Int Rev Cell Mol Biol. 2016;327:371-412. doi: 10.1016/bs.ircmb.2016.07.001. Epub 2016 Sep 7. Review. PubMed PMID: 27692179.

6: Choi H, Oh E. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis. Mol Cells. 2016 Aug 31;39(8):587-93. doi: 10.14348/molcells.2016.0126. Epub 2016 Jul 19. Review. PubMed PMID: 27432188; PubMed Central PMCID: PMC4990750.

7: Shigenaga AM, Argueso CT. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol. 2016 Aug;56:174-189. doi: 10.1016/j.semcdb.2016.06.005. Epub 2016 Jun 14. Review. PubMed PMID: 27312082.

8: Xu J, Hou N, Han N, Bian HW, Zhu MY. [The regulatory roles of small RNAs in phytohormone signaling pathways]. Yi Chuan. 2016 May;38(5):418-26. doi: 10.16288/j.yczz.15-485. Review. Chinese. PubMed PMID: 27232490.

9: Kwon CT, Paek NC. Gibberellic Acid: A Key Phytohormone for Spikelet Fertility in Rice Grain Production. Int J Mol Sci. 2016 May 23;17(5). pii: E794. doi: 10.3390/ijms17050794. Review. PubMed PMID: 27223278; PubMed Central PMCID: PMC4881610.

10: Vildanova MS, Smirnova EA. [EFFECTS OF DIFFERENT CLASSES OF PLANT HORMONES ON MAMMALIAN CELLS]. Tsitologiia. 2016;58(1):5-15. Review. Russian. PubMed PMID: 27220246.

11: Chanclud E, Morel JB. Plant hormones: a fungal point of view. Mol Plant Pathol. 2016 Oct;17(8):1289-97. doi: 10.1111/mpp.12393. Epub 2016 Jul 1. Review. PubMed PMID: 26950404.

12: Ordonio R, Ito Y, Morinaka Y, Sazuka T, Matsuoka M. Molecular Breeding of Sorghum bicolor, A Novel Energy Crop. Int Rev Cell Mol Biol. 2016;321:221-57. doi: 10.1016/bs.ircmb.2015.09.001. Epub 2015 Oct 31. Review. PubMed PMID: 26811289.

13: Gazzarrini S, Tsai AY. Hormone cross-talk during seed germination. Essays Biochem. 2015;58:151-64. doi: 10.1042/bse0580151. Review. PubMed PMID: 26374893.

14: Phukan UJ, Mishra S, Shukla RK. Waterlogging and submergence stress: affects and acclimation. Crit Rev Biotechnol. 2016 Oct;36(5):956-66. doi: 10.3109/07388551.2015.1064856. Epub 2015 Jul 15. Review. PubMed PMID: 26177332.

15: Shu K, Meng YJ, Shuai HW, Liu WG, Du JB, Liu J, Yang WY. Dormancy and germination: How does the crop seed decide? Plant Biol (Stuttg). 2015 Nov;17(6):1104-12. doi: 10.1111/plb.12356. Epub 2015 Jul 14. Review. PubMed PMID: 26095078.

16: Novak SD, Luna LJ, Gamage RN. Role of auxin in orchid development. Plant Signal Behav. 2014;9(10):e972277. doi: 10.4161/psb.32169. Review. PubMed PMID: 25482818; PubMed Central PMCID: PMC4622584.

17: Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res Int. 2015 Apr;22(7):4907-21. doi: 10.1007/s11356-014-3754-2. Epub 2014 Nov 6. Review. PubMed PMID: 25369916.

18: van Doorn WG, Kamdee C. Flower opening and closure: an update. J Exp Bot. 2014 Nov;65(20):5749-57. doi: 10.1093/jxb/eru327. Epub 2014 Aug 18. Review. PubMed PMID: 25135521.

19: Xu H, Liu Q, Yao T, Fu X. Shedding light on integrative GA signaling. Curr Opin Plant Biol. 2014 Oct;21:89-95. doi: 10.1016/j.pbi.2014.06.010. Epub 2014 Jul 25. Review. PubMed PMID: 25061896.

20: Hüner NP, Dahal K, Kurepin LV, Savitch L, Singh J, Ivanov AG, Kane K, Sarhan F. Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid. Front Chem. 2014 Apr 17;2:18. doi: 10.3389/fchem.2014.00018. eCollection 2014. Review. PubMed PMID: 24860799; PubMed Central PMCID: PMC4029004.