beta-Naphthoflavone
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 540310

CAS#: 6051-87-2

Description: beta-Naphthoflavone is a AhR agonist and antioxidant. It inhibits cigarette smoked-induced DNA damage and tumor development and induces cell cycle arrest in breast cancer cells.


Chemical Structure

img
beta-Naphthoflavone
CAS# 6051-87-2

Theoretical Analysis

MedKoo Cat#: 540310
Name: beta-Naphthoflavone
CAS#: 6051-87-2
Chemical Formula: C19H12O2
Exact Mass: 272.08
Molecular Weight: 272.300
Elemental Analysis: C, 83.81; H, 4.44; O, 11.75

Price and Availability

Size Price Availability Quantity
1g USD 150 Ready to ship
2g USD 225 Ready to ship
5g USD 450 2 weeks
Bulk inquiry

Synonym: beta-Naphthoflavone; beta-NF

IUPAC/Chemical Name: 3-phenyl-1H-benzo[f]chromen-1-one

InChi Key: OUGIDAPQYNCXRA-UHFFFAOYSA-N

InChi Code: InChI=1S/C19H12O2/c20-16-12-18(14-7-2-1-3-8-14)21-17-11-10-13-6-4-5-9-15(13)19(16)17/h1-12H

SMILES Code: O=C1C2=C3C=CC=CC3=CC=C2OC(C4=CC=CC=C4)=C1

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2932.99.7000

More Info:

Product Data:
Safety Data Sheet (SDS):
Biological target: An AhR agonist.
In vitro activity: This study showed that β-naphthoflavone induces a decrease in the level of intracellular labile zinc. This study also observed a tendency for β-naphthoflavone (10 µM) to induce a decrease of intracellular total zinc levels, and an alteration of intracellular labile zinc distribution with an increase of the number of vesicles incorporating intracellular labile zinc. Reference: J Toxicol Sci. 2019;44(10):711-720. https://pubmed.ncbi.nlm.nih.gov/31588062/
In vivo activity: The survival rate of vehicle treated mice was 33.33% at day 30 (Figure 6a), while the BNF (beta-Naphthoflavone) treated mice showed a higher survival rate of 40.0% (25 mg/kg/day), 70.0% (75 mg/kg/day), and 60.0% (100 mg/kg), compared to the control irradiated group. The median survival of the vehicle treated group was 14 days after exposure to lethal dose radiation, while the BNF (25 mg/kg) treated group median survival was 18.5 days. In contrast, the preventive treatment with BNF for seven days, followed by an additional administration for five days did not provide a benefit to the mice in terms of increased survival from lethal irradiation exposure, considering that the median survival was similar between the vehicle and BNF-treated mice (Figure 6b). Hence, BNF treatment prior to irradiation exhibited a protective effect for mice exposed to lethal dose irradiation, prolonging median survival. However, the observed decrease in body weight loss in the presence of BNF treatment was not significantly different from the vehicle treated mice (Figure S4). Reference: Antioxidants (Basel). 2020 Dec; 9(12): 1264. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763649/

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
Chloroform 10.0 36.72

Preparing Stock Solutions

The following data is based on the product molecular weight 272.30 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol: 1. Ishida T, Takechi S. β-Naphthoflavone, an exogenous ligand of aryl hydrocarbon receptor, disrupts zinc homeostasis in human hepatoma HepG2 cells. J Toxicol Sci. 2019;44(10):711-720. doi: 10.2131/jts.44.711. PMID: 31588062. 2. Brauze D, Zawierucha P, Kiwerska K, Bednarek K, Oleszak M, Rydzanicz M, Jarmuz-Szymczak M. Induction of expression of aryl hydrocarbon receptor-dependent genes in human HepaRG cell line modified by shRNA and treated with β-naphthoflavone. Mol Cell Biochem. 2017 Jan;425(1-2):59-75. doi: 10.1007/s11010-016-2862-3. Epub 2016 Oct 28. PMID: 27796684; PMCID: PMC5225230. 3. Zhou X, Li D, Xu W, Zhang H, Wang H, Perdew GH. β-Naphthoflavone Activation of the Ah Receptor Alleviates Irradiation-Induced Intestinal Injury in Mice. Antioxidants (Basel). 2020 Dec 12;9(12):1264. doi: 10.3390/antiox9121264. PMID: 33322705; PMCID: PMC7763649. 4. Furukawa S, Tsuji N, Hayashi S, Kuroda Y, Kimura M, Hayakawa C, Takeuchi K, Sugiyama A. The effects of β-naphthoflavone on rat placental development. J Toxicol Pathol. 2019 Oct;32(4):275-282. doi: 10.1293/tox.2019-0047. Epub 2019 Aug 20. PMID: 31719754; PMCID: PMC6831496.
In vitro protocol: 1. Ishida T, Takechi S. β-Naphthoflavone, an exogenous ligand of aryl hydrocarbon receptor, disrupts zinc homeostasis in human hepatoma HepG2 cells. J Toxicol Sci. 2019;44(10):711-720. doi: 10.2131/jts.44.711. PMID: 31588062. 2. Brauze D, Zawierucha P, Kiwerska K, Bednarek K, Oleszak M, Rydzanicz M, Jarmuz-Szymczak M. Induction of expression of aryl hydrocarbon receptor-dependent genes in human HepaRG cell line modified by shRNA and treated with β-naphthoflavone. Mol Cell Biochem. 2017 Jan;425(1-2):59-75. doi: 10.1007/s11010-016-2862-3. Epub 2016 Oct 28. PMID: 27796684; PMCID: PMC5225230.
In vivo protocol: 1. Zhou X, Li D, Xu W, Zhang H, Wang H, Perdew GH. β-Naphthoflavone Activation of the Ah Receptor Alleviates Irradiation-Induced Intestinal Injury in Mice. Antioxidants (Basel). 2020 Dec 12;9(12):1264. doi: 10.3390/antiox9121264. PMID: 33322705; PMCID: PMC7763649. 2. Furukawa S, Tsuji N, Hayashi S, Kuroda Y, Kimura M, Hayakawa C, Takeuchi K, Sugiyama A. The effects of β-naphthoflavone on rat placental development. J Toxicol Pathol. 2019 Oct;32(4):275-282. doi: 10.1293/tox.2019-0047. Epub 2019 Aug 20. PMID: 31719754; PMCID: PMC6831496.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Wang C, Xu CX, Bu Y, Bottum KM, Tischkau SA. Beta-naphthoflavone (DB06732) mediates estrogen receptor-positive breast cancer cell cycle arrest through AhR-dependent regulation of PI3K/AKT and MAPK/ERK signaling. Carcinogenesis. 2014 Mar;35(3):703-13. doi: 10.1093/carcin/bgt356. Epub 2013 Oct 26. PubMed PMID: 24163404; PubMed Central PMCID: PMC3941744.

2: Chatuphonprasert W, Sangkawat T, Nemoto N, Jarukamjorn K. Suppression of beta-naphthoflavone induced CYP1A expression and lipid-peroxidation by berberine. Fitoterapia. 2011 Sep;82(6):889-95. doi: 10.1016/j.fitote.2011.05.002. Epub 2011 May 23. PubMed PMID: 21624442.

3: Elsherbiny ME, El-Kadi AO, Brocks DR. The effect of beta-naphthoflavone on the metabolism of amiodarone by hepatic and extra-hepatic microsomes. Toxicol Lett. 2010 Jun 2;195(2-3):147-54. doi: 10.1016/j.toxlet.2010.03.019. Epub 2010 Apr 1. PubMed PMID: 20362646.

4: Udomsuk L, Chatuphonprasert W, Jarukamjorn K, Sithithaworn P. Andrographolide Ameliorates Beta-Naphthoflavone-Induced CYP1A Enzyme Activity and Lipid Peroxidation in Hamsters with Acute Opisthorchiasis. J Med Assoc Thai. 2016 Jan;99 Suppl 1:S22-7. PubMed PMID: 26817235.

5: Ferreira RS, Chivittz CD, Santos GS, Zanette J. Cytochrome P450 1A mRNA in the guppy Phalloceros caudimaculatus and response to beta-naphthoflavone and environmental samples. Aquat Toxicol. 2016 Dec;181:86-93. doi: 10.1016/j.aquatox.2016.10.023. Epub 2016 Oct 25. PubMed PMID: 27821351.

6: Fujita Y, Yonehara M, Tetsuhashi M, Noguchi-Yachide T, Hashimoto Y, Ishikawa M. beta-Naphthoflavone analogs as potent and soluble aryl hydrocarbon receptor agonists: improvement of solubility by disruption of molecular planarity. Bioorg Med Chem. 2010 Feb;18(3):1194-203. doi: 10.1016/j.bmc.2009.12.036. Epub 2009 Dec 21. PubMed PMID: 20060304.

7: Shimada Y, Dewa Y, Ichimura R, Suzuki T, Mizukami S, Hayashi SM, Shibutani M, Mitsumori K. Antioxidant enzymatically modified isoquercitrin suppresses the development of liver preneoplastic lesions in rats induced by beta-naphthoflavone. Toxicology. 2010 Feb 9;268(3):213-8. doi: 10.1016/j.tox.2009.12.019. Epub 2010 Jan 5. PubMed PMID: 20045035.

8: Heinrich P, Diehl U, Förster F, Braunbeck T. Improving the in vitro ethoxyresorufin-O-deethylase (EROD) assay with RTL-W1 by metabolic normalization and use of β-naphthoflavone as the reference substance. Comp Biochem Physiol C Toxicol Pharmacol. 2014 Aug;164:27-34. doi: 10.1016/j.cbpc.2014.04.005. Epub 2014 Apr 22. PubMed PMID: 24768776.

9: Stauber KL, Laskin JD, Yurkow EJ, Thomas PE, Laskin DL, Conney AH. Flow cytometry reveals subpopulations of murine epidermal cells that are refractory to induction of cytochrome P-4501A1 by beta-naphthoflavone. J Pharmacol Exp Ther. 1995 May;273(2):967-76. PubMed PMID: 7752102.

10: Ishida K, Taguchi M, Akao T, Hashimoto Y. Involvement of the CYP1A subfamily in stereoselective metabolism of carvedilol in beta-naphthoflavone-treated Caco-2 cells. Biol Pharm Bull. 2009 Mar;32(3):513-6. PubMed PMID: 19252307.

11: Koleva M, Staneva-Stoytcheva D. Effect of nifedipine on the enzyme-inducing activity of phenobarbital and beta-naphthoflavone. Acta Physiol Pharmacol Bulg. 1991;17(2-3):122-8. PubMed PMID: 1819909.

12: Hayashi H, Taniai E, Morita R, Hayashi M, Nakamura D, Wakita A, Suzuki K, Shibutani M, Mitsumori K. Enhanced liver tumor promotion but not liver initiation activity in rats subjected to combined administration of omeprazole and β-naphthoflavone. J Toxicol Sci. 2012;37(5):969-85. PubMed PMID: 23038005.

13: Degen GH. Inhibition of prostaglandin H synthase-catalyzed cooxidation of diethylstilbestrol by alpha-naphthoflavone and beta-naphthoflavone. J Biochem Toxicol. 1988 Spring;3:1-10. PubMed PMID: 3148723.

14: Sun JQ, Lau PP, Strobel HW. Aging modifies the expression of hepatic microsomal cytochromes P-450 after pretreatment of rats with beta-naphthoflavone or phenobarbital. Exp Gerontol. 1986;21(2):65-73. PubMed PMID: 3758228.

15: Lakshmi VM, Hsu FF, Zenser TV. Identification of new 2-amino-3-methylimidazo[4,5-f]quinoline urinary metabolites from beta-naphthoflavone-treated mice. Drug Metab Dispos. 2009 Aug;37(8):1690-7. doi: 10.1124/dmd.109.027342. Epub 2009 May 18. PubMed PMID: 19451400; PubMed Central PMCID: PMC2712437.

16: Brauze D, Januchowski R, Szyfter K. Differences between rats and mice in induction of 4S beta-naphthoflavone-binding protein expression by treatment with beta-naphthoflavone. J Appl Genet. 2002;43(3):371-6. PubMed PMID: 12177527.

17: Chen EP, Chen L, Ji Y, Tai G, Wen YH, Ellens H. A mechanism-based mathematical model of aryl hydrocarbon receptor-mediated CYP1A induction in rats using beta-naphthoflavone as a tool compound. Drug Metab Dispos. 2010 Dec;38(12):2278-85. doi: 10.1124/dmd.110.034421. Epub 2010 Sep 15. PubMed PMID: 20843940.

18: Riviere JL, Devaux A, Gonin O, Monod G. Effect of beta-naphthoflavone and MCPA on liver and kidney drug-metabolizing enzymes from the carp, Cyprinus carpio. Ecotoxicol Environ Saf. 1990 Jun;19(3):276-84. PubMed PMID: 2364910.

19: Shi LZ, Czuprynski CJ. Beta-naphthoflavone causes an AhR-independent inhibition of invasion and intracellular multiplication of Listeria monocytogenes in murine hepatocytes. Microb Pathog. 2009 Nov;47(5):258-66. doi: 10.1016/j.micpath.2009.08.004. Epub 2009 Aug 26. PubMed PMID: 19715752; PubMed Central PMCID: PMC2767476.

20: Yokota H, Inoue H, Taniyama H, Kobayashi T, Iwano H, Kagawa Y, Okada H, Yuasa A. High induction of phenol UDP-glucuronosyltransferase in the kidney medulla of beta-naphthoflavone-treated rats. Biochim Biophys Acta. 1997 Aug 29;1336(2):165-70. PubMed PMID: 9305786.