NSC-95397
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 551008

CAS#: 93718-83-3

Description: NSC-95397 is a novel CDC25B inhibitor, inhibiting influenza A virus replication in dose-dependent fashion. NSC95397 prevents the CtBP1-Protein Partner Interaction and CtBP1-Mediated Transcriptional Repression. NSC-95397 triggers apoptosis of tumor cells and is thus considered for the treatment of malignancy.


Chemical Structure

img
NSC-95397
CAS# 93718-83-3

Theoretical Analysis

MedKoo Cat#: 551008
Name: NSC-95397
CAS#: 93718-83-3
Chemical Formula: C14H14O4S2
Exact Mass: 310.03
Molecular Weight: 310.382
Elemental Analysis: C, 54.18; H, 4.55; O, 20.62; S, 20.66

Price and Availability

Size Price Availability Quantity
5mg USD 230
10mg USD 360
25mg USD 730
Bulk inquiry

Synonym: NSC-95397; NSC95397; NSC 95397

IUPAC/Chemical Name: 2,3-Bis(2-hydroxyethylsulfanyl)naphthalene-1,4-dione

InChi Key: MAASHDQFQDDECQ-UHFFFAOYSA-N

InChi Code: InChI=1S/C14H14O4S2/c15-5-7-19-13-11(17)9-3-1-2-4-10(9)12(18)14(13)20-8-6-16/h1-4,15-16H,5-8H2

SMILES Code: O=C1C(SCCO)=C(SCCO)C(C2=C1C=CC=C2)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Product Data:
Biological target: NSC 95397 is a potent, selective Cdc25 dual specificity phosphatase inhibitor.
In vitro activity: Most notable was NSC 95397 (2,3-bis-[2-hydroxyethylsulfanyl]-[1,4]naphthoquinone), which displayed mixed inhibition kinetics with in vitro K(i) values for Cdc25A, -B, and -C of 32, 96, and 40 nM, respectively. NSC 95397 was more potent than any inhibitor of dual specificity phosphatases described previously and 125- to 180-fold more selective for Cdc25A than VH1-related dual-specificity phosphatase or protein tyrosine phosphatase 1b, respectively. NSC 95397 showed significant growth inhibition against human and murine carcinoma cells and blocked G(2)/M phase transition. Reference: Mol Pharmacol. 2002 Apr;61(4):720-8. https://pubmed.ncbi.nlm.nih.gov/11901209/
In vivo activity: Mice treated with NSC95397 pre- or postinfection were fully protected against lethal A/WSN/33 infection (P < 0.001) and displayed less-severe weight loss than DMSO-treated mice (P < 0.001 or P < 0.5). At 72 hpi, mice treated prophylactically with NSC95397 at 2.5 mg/kg (24 h preinfection; P < 0.01) and at 5 mg/kg (two administrations of 2.5 mg/kg each at 24 and 12 h preinfection; P < 0.001) displayed a significant reduction of lung virus copy number. Additionally, 5 mg/kg NSC95397 administered therapeutically (two administrations of 2.5 mg/kg dose at 12 and 24 hpi) also significantly reduced lung virus copy number (P < 0.001). Reference: J Virol. 2013 Dec;87(24):13775-84. https://pubmed.ncbi.nlm.nih.gov/24109234/

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMF 30.0 96.66
DMSO 51.9 167.15
DMSO:PBS (pH 7.2) (1:5) 0.2 0.52
Ethanol 1.3 4.17

Preparing Stock Solutions

The following data is based on the product molecular weight 310.38 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol: 1. Dubey NK, Peng BY, Lin CM, Wang PD, Wang JR, Chan CH, Wei HJ, Deng WP. NSC 95397 Suppresses Proliferation and Induces Apoptosis in Colon Cancer Cells through MKP-1 and the ERK1/2 Pathway. Int J Mol Sci. 2018 May 31;19(6):1625. doi: 10.3390/ijms19061625. PMID: 29857489; PMCID: PMC6032145. 2. Lazo JS, Nemoto K, Pestell KE, Cooley K, Southwick EC, Mitchell DA, Furey W, Gussio R, Zaharevitz DW, Joo B, Wipf P. Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Mol Pharmacol. 2002 Apr;61(4):720-8. doi: 10.1124/mol.61.4.720. PMID: 11901209. 3. Perwitasari O, Torrecilhas AC, Yan X, Johnson S, White C, Tompkins SM, Tripp RA. Targeting cell division cycle 25 homolog B to regulate influenza virus replication. J Virol. 2013 Dec;87(24):13775-84. doi: 10.1128/JVI.01509-13. Epub 2013 Oct 9. PMID: 24109234; PMCID: PMC3838213.
In vitro protocol: 1. Dubey NK, Peng BY, Lin CM, Wang PD, Wang JR, Chan CH, Wei HJ, Deng WP. NSC 95397 Suppresses Proliferation and Induces Apoptosis in Colon Cancer Cells through MKP-1 and the ERK1/2 Pathway. Int J Mol Sci. 2018 May 31;19(6):1625. doi: 10.3390/ijms19061625. PMID: 29857489; PMCID: PMC6032145. 2. Lazo JS, Nemoto K, Pestell KE, Cooley K, Southwick EC, Mitchell DA, Furey W, Gussio R, Zaharevitz DW, Joo B, Wipf P. Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Mol Pharmacol. 2002 Apr;61(4):720-8. doi: 10.1124/mol.61.4.720. PMID: 11901209.
In vivo protocol: 1. Perwitasari O, Torrecilhas AC, Yan X, Johnson S, White C, Tompkins SM, Tripp RA. Targeting cell division cycle 25 homolog B to regulate influenza virus replication. J Virol. 2013 Dec;87(24):13775-84. doi: 10.1128/JVI.01509-13. Epub 2013 Oct 9. PMID: 24109234; PMCID: PMC3838213.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Brenner AK, Reikvam H, Rye KP, Hagen KM, Lavecchia A, Bruserud Ø. CDC25 Inhibition in Acute Myeloid Leukemia-A Study of Patient Heterogeneity and the Effects of Different Inhibitors. Molecules. 2017 Mar 11;22(3). pii: E446. doi: 10.3390/molecules22030446. PubMed PMID: 28287460.

2: Jemaà M, Mischitelli M, Fezai M, Almasry M, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by the CDC25 Inhibitor NSC-95397. Cell Physiol Biochem. 2016;40(3-4):597-607. Epub 2016 Nov 25. PubMed PMID: 27889774.

3: Blevins MA, Kouznetsova J, Krueger AB, King R, Griner LM, Hu X, Southall N, Marugan JJ, Zhang Q, Ferrer M, Zhao R. Small Molecule, NSC95397, Inhibits the CtBP1-Protein Partner Interaction and CtBP1-Mediated Transcriptional Repression. J Biomol Screen. 2015 Jun;20(5):663-72. doi: 10.1177/1087057114561400. Epub 2014 Dec 4. PubMed PMID: 25477201; PubMed Central PMCID: PMC4486263.

4: Yang Y, Yang WS, Yu T, Yi YS, Park JG, Jeong D, Kim JH, Oh JS, Yoon K, Kim JH, Cho JY. Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases. Biochem Pharmacol. 2014 Mar 15;88(2):201-15. doi: 10.1016/j.bcp.2014.01.022. Epub 2014 Jan 25. PubMed PMID: 24468133.

5: Niisato N, Ohta M, Eaton DC, Marunaka Y. Hypotonic stress upregulates β- and γ-ENaC expression through suppression of ERK by inducing MKP-1. Am J Physiol Renal Physiol. 2012 Jul 15;303(2):F240-52. doi: 10.1152/ajprenal.00198.2011. Epub 2012 May 9. PubMed PMID: 22573375; PubMed Central PMCID: PMC3404587.

6: Liu T, Li Y, Lin K, Yin H, He B, Zheng M, Wang G. Regulation of S100A4 expression via the JAK2-STAT3 pathway in rhomboid-phenotype pulmonary arterial smooth muscle cells exposure to hypoxia. Int J Biochem Cell Biol. 2012 Aug;44(8):1337-45. doi: 10.1016/j.biocel.2012.04.017. Epub 2012 Apr 27. PubMed PMID: 22561747.

7: Dulyaninova NG, Hite KM, Zencheck WD, Scudiero DA, Almo SC, Shoemaker RH, Bresnick AR. Cysteine 81 is critical for the interaction of S100A4 and myosin-IIA. Biochemistry. 2011 Aug 23;50(33):7218-27. doi: 10.1021/bi200853y. Epub 2011 Jul 21. PubMed PMID: 21749055; PubMed Central PMCID: PMC3220277.

8: Larsson DE, Wickström M, Hassan S, Oberg K, Granberg D. The cytotoxic agents NSC-95397, brefeldin A, bortezomib and sanguinarine induce apoptosis in neuroendocrine tumors in vitro. Anticancer Res. 2010 Jan;30(1):149-56. PubMed PMID: 20150630.

9: Soares KM, Blackmon N, Shun TY, Shinde SN, Takyi HK, Wipf P, Lazo JS, Johnston PA. Profiling the NIH Small Molecule Repository for compounds that generate H2O2 by redox cycling in reducing environments. Assay Drug Dev Technol. 2010 Apr;8(2):152-74. doi: 10.1089/adt.2009.0247. PubMed PMID: 20070233; PubMed Central PMCID: PMC3098569.

10: Larsson DE, Hassan S, Larsson R, Oberg K, Granberg D. Combination analyses of anti-cancer drugs on human neuroendocrine tumor cell lines. Cancer Chemother Pharmacol. 2009 Dec;65(1):5-12. doi: 10.1007/s00280-009-0997-6. Epub 2009 Apr 19. PubMed PMID: 19381631.

11: Ko S, Lee W, Lee S, Park H. Nanosecond molecular dynamics simulations of Cdc25B and its complex with a 1,4-naphthoquinone inhibitor: implications for rational inhibitor design. J Mol Graph Model. 2008 Aug;27(1):13-9. doi: 10.1016/j.jmgm.2008.02.002. Epub 2008 Feb 16. PubMed PMID: 18359256.

12: Lambert CC. Signaling pathways in ascidian oocyte maturation: the role of cyclic AMP and follicle cells in germinal vesicle breakdown. Dev Growth Differ. 2008 Mar;50(3):181-8. doi: 10.1111/j.1440-169X.2008.00983.x. Epub 2008 Feb 27. PubMed PMID: 18312430.

13: Vogt A, McDonald PR, Tamewitz A, Sikorski RP, Wipf P, Skoko JJ 3rd, Lazo JS. A cell-active inhibitor of mitogen-activated protein kinase phosphatases restores paclitaxel-induced apoptosis in dexamethasone-protected cancer cells. Mol Cancer Ther. 2008 Feb;7(2):330-40. doi: 10.1158/1535-7163.MCT-07-2165. Epub 2008 Feb 1. PubMed PMID: 18245669.

14: Park H, Carr BI, Li M, Ham SW. Fluorinated NSC as a Cdc25 inhibitor. Bioorg Med Chem Lett. 2007 Apr 15;17(8):2351-4. Epub 2006 Dec 21. PubMed PMID: 17379514.

15: Larsson DE, Lövborg H, Rickardson L, Larsson R, Oberg K, Granberg D. Identification and evaluation of potential anti-cancer drugs on human neuroendocrine tumor cell lines. Anticancer Res. 2006 Nov-Dec;26(6B):4125-9. PubMed PMID: 17201123.

16: Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol. 2006 Apr;18(2):185-91. Epub 2006 Feb 17. Review. PubMed PMID: 16488126.

17: Peyregne VP, Kar S, Ham SW, Wang M, Wang Z, Carr BI. Novel hydroxyl naphthoquinones with potent Cdc25 antagonizing and growth inhibitory properties. Mol Cancer Ther. 2005 Apr;4(4):595-602. PubMed PMID: 15827333.

18: Melchheier I, von Montfort C, Stuhlmann D, Sies H, Klotz LO. Quinone-induced Cdc25A inhibition causes ERK-dependent connexin phosphorylation. Biochem Biophys Res Commun. 2005 Feb 25;327(4):1016-23. PubMed PMID: 15652497.

19: Rudolph J. Targeting the neighbor's pool. Mol Pharmacol. 2004 Oct;66(4):780-2. Epub 2004 Jul 16. PubMed PMID: 15258253.

20: Han Y, Shen H, Carr BI, Wipf P, Lazo JS, Pan SS. NAD(P)H:quinone oxidoreductase-1-dependent and -independent cytotoxicity of potent quinone Cdc25 phosphatase inhibitors. J Pharmacol Exp Ther. 2004 Apr;309(1):64-70. Epub 2004 Jan 12. PubMed PMID: 14718602.