Leucylleucine methyl ester

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 529916

CAS#: 13022-42-9 (methyl ester)

Description: Leucylleucine methyl ester is a drug potentially for the treatment of Graft-Versus-Host-Disease.


Chemical Structure

img
Leucylleucine methyl ester
CAS# 13022-42-9 (methyl ester)

Theoretical Analysis

MedKoo Cat#: 529916
Name: Leucylleucine methyl ester
CAS#: 13022-42-9 (methyl ester)
Chemical Formula: C13H26N2O3
Exact Mass: 258.19
Molecular Weight: 258.360
Elemental Analysis: C, 60.44; H, 10.14; N, 10.84; O, 18.58

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Related CAS #: 13022-42-9 (methyl ester)   2883-36-5 (free)  

Synonym: LLME; LeuLeuOMe

IUPAC/Chemical Name: L-Leucine, N-L-leucyl-, methyl ester

InChi Key: AJMOLNFDYWTVQW-QWRGUYRKSA-N

InChi Code: InChI=1S/C13H26N2O3/c1-8(2)6-10(14)12(16)15-11(7-9(3)4)13(17)18-5/h8-11H,6-7,14H2,1-5H3,(H,15,16)/t10-,11-/m0/s1

SMILES Code: CC(C)C[C@@H](C(OC)=O)NC([C@H](CC(C)C)N)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
Soluble in DMSO 0.0 0.00

Preparing Stock Solutions

The following data is based on the product molecular weight 258.36 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Hsieh MH, Varadi G, Flomenberg N, Korngold R. Leucyl-leucine methyl ester-treated haploidentical donor lymphocyte infusions can mediate graft-versus-leukemia activity with minimal graft-versus-host disease risk. Biol Blood Marrow Transplant. 2002;8(6):303-15. PubMed PMID: 12108916.

2: Ohlin M, Danielsson L, Carlsson R, Borrebaeck CA. The effect of leucyl-leucine methyl ester on proliferation and Ig secretion of EBV-transformed human B lymphocytes. Immunology. 1989 Apr;66(4):485-90. PubMed PMID: 2541070; PubMed Central PMCID: PMC1385146.

3: Mowat AM, Leck PA. Generalized toxicity of L-leucyl-leucine-methyl ester for lymphocyte functions. Immunology. 1990 Apr;69(4):564-9. PubMed PMID: 2335375; PubMed Central PMCID: PMC1385630.

4: Pechhold K, Kabelitz D. Human peripheral blood gamma delta T cells are uniformly sensitive to destruction by the lysosomotropic agents leucine methyl ester and leucyl leucine methyl ester. Eur J Immunol. 1993 Feb;23(2):562-5. PubMed PMID: 8436187.

5: Thiele DL, Geissler GH, Williams FH, Lipsky PE. The role of leucyl-leucine methyl ester-sensitive cytotoxic cells in skin allograft rejection. Transplantation. 1992 Jun;53(6):1334-40. PubMed PMID: 1604489.

6: Thiele DL, Lipsky PE. The action of leucyl-leucine methyl ester on cytotoxic lymphocytes requires uptake by a novel dipeptide-specific facilitated transport system and dipeptidyl peptidase I-mediated conversion to membranolytic products. J Exp Med. 1990 Jul 1;172(1):183-94. PubMed PMID: 1972727; PubMed Central PMCID: PMC2188150.

7: Thiele DL, Calomeni JA, Lipsky PE. Leucyl-leucine methyl ester treatment of donor cells permits establishment of immunocompetent parent----F1 chimeras that are selectively tolerant of host alloantigens. J Immunol. 1987 Oct 1;139(7):2137-42. PubMed PMID: 3309052.

8: Thiele DL, Charley MR, Calomeni JA, Lipsky PE. Lethal graft-vs-host disease across major histocompatibility barriers: requirement for leucyl-leucine methyl ester sensitive cytotoxic T cells. J Immunol. 1987 Jan 1;138(1):51-7. PubMed PMID: 2946780.

9: Chen KW, Bezbradica JS, Groß CJ, Wall AA, Sweet MJ, Stow JL, Schroder K. The murine neutrophil NLRP3 inflammasome is activated by soluble but not particulate or crystalline agonists. Eur J Immunol. 2016 Apr;46(4):1004-10. doi: 10.1002/eji.201545943. PubMed PMID: 27062120.

10: Hughes CS, Colhoun LM, Bains BK, Kilgour JD, Burden RE, Burrows JF, Lavelle EC, Gilmore BF, Scott CJ. Extracellular cathepsin S and intracellular caspase 1 activation are surrogate biomarkers of particulate-induced lysosomal disruption in macrophages. Part Fibre Toxicol. 2016 Apr 23;13:19. doi: 10.1186/s12989-016-0129-5. PubMed PMID: 27108091; PubMed Central PMCID: PMC4842290.

11: Demizu Y, Yamashita H, Doi M, Misawa T, Oba M, Tanaka M, Kurihara M. Topological Study of the Structures of Heterochiral Peptides Containing Equal Amounts of l-Leu and d-Leu. J Org Chem. 2015 Sep 4;80(17):8597-603. doi: 10.1021/acs.joc.5b01541. PubMed PMID: 26274390.

12: Železnik TZ, Kadin A, Turk V, Dolenc I. Aspartic cathepsin D degrades the cytosolic cysteine cathepsin inhibitor stefin B in the cells. Biochem Biophys Res Commun. 2015 Sep 18;465(2):213-7. doi: 10.1016/j.bbrc.2015.07.155. PubMed PMID: 26239660.

13: Hagforsen E, Paivandy A, Lampinen M, Weström S, Calounova G, Melo FR, Rollman O, Pejler G. Ablation of human skin mast cells in situ by lysosomotropic agents. Exp Dermatol. 2015 Jul;24(7):516-21. doi: 10.1111/exd.12699. PubMed PMID: 25808581.

14: Katsnelson MA, Rucker LG, Russo HM, Dubyak GR. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J Immunol. 2015 Apr 15;194(8):3937-52. doi: 10.4049/jimmunol.1402658. PubMed PMID: 25762778; PubMed Central PMCID: PMC4390495.

15: Brojatsch J, Lima H Jr, Palliser D, Jacobson LS, Muehlbauer SM, Furtado R, Goldman DL, Lisanti MP, Chandran K. Distinct cathepsins control necrotic cell death mediated by pyroptosis inducers and lysosome-destabilizing agents. Cell Cycle. 2015;14(7):964-72. doi: 10.4161/15384101.2014.991194. PubMed PMID: 25830414; PubMed Central PMCID: PMC4614982.

16: Shemesh A, Wang Y, Yang Y, Yang GS, Johnson DE, Backer JM, Pessin JE, Zong H. Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation. Am J Physiol Regul Integr Comp Physiol. 2014 Nov 15;307(10):R1251-9. doi: 10.1152/ajpregu.00212.2014. PubMed PMID: 25231351; PubMed Central PMCID: PMC4233288.

17: Brojatsch J, Lima H, Kar AK, Jacobson LS, Muehlbauer SM, Chandran K, Diaz-Griffero F. A proteolytic cascade controls lysosome rupture and necrotic cell death mediated by lysosome-destabilizing adjuvants. PLoS One. 2014 Jun 3;9(6):e95032. doi: 10.1371/journal.pone.0095032. PubMed PMID: 24893007; PubMed Central PMCID: PMC4043491.

18: Butinar M, Prebanda MT, Rajković J, Jerič B, Stoka V, Peters C, Reinheckel T, Krüger A, Turk V, Turk B, Vasiljeva O. Stefin B deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model. Oncogene. 2014 Jun 26;33(26):3392-400. doi: 10.1038/onc.2013.314. PubMed PMID: 23955077.

19: Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, Yamamoto A, Hamasaki M, Noda T, Isaka Y, Yoshimori T. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 2013 Aug 28;32(17):2336-47. doi: 10.1038/emboj.2013.171. PubMed PMID: 23921551; PubMed Central PMCID: PMC3770333.

20: Lima H Jr, Jacobson LS, Goldberg MF, Chandran K, Diaz-Griffero F, Lisanti MP, Brojatsch J. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle. 2013 Jun 15;12(12):1868-78. doi: 10.4161/cc.24903. PubMed PMID: 23708522; PubMed Central PMCID: PMC3735701.